1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
// Derived from SciPy's special/cephes/lanczos.c
// https://github.com/scipy/scipy/blob/master/scipy/special/cephes/lanczos.c
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright ©2006 John Maddock
// Portions Copyright ©2003 Boost
// Portions Copyright ©2016 The Gonum Authors. All rights reserved.
package cephes
// Optimal values for G for each N are taken from
// http://web.mala.bc.ca/pughg/phdThesis/phdThesis.pdf,
// as are the theoretical error bounds.
// Constants calculated using the method described by Godfrey
// http://my.fit.edu/~gabdo/gamma.txt and elaborated by Toth at
// http://www.rskey.org/gamma.htm using NTL::RR at 1000 bit precision.
var lanczosNum = [...]float64{
2.506628274631000270164908177133837338626,
210.8242777515793458725097339207133627117,
8071.672002365816210638002902272250613822,
186056.2653952234950402949897160456992822,
2876370.628935372441225409051620849613599,
31426415.58540019438061423162831820536287,
248874557.8620541565114603864132294232163,
1439720407.311721673663223072794912393972,
6039542586.35202800506429164430729792107,
17921034426.03720969991975575445893111267,
35711959237.35566804944018545154716670596,
42919803642.64909876895789904700198885093,
23531376880.41075968857200767445163675473,
}
var lanczosDenom = [...]float64{
1,
66,
1925,
32670,
357423,
2637558,
13339535,
45995730,
105258076,
150917976,
120543840,
39916800,
0,
}
var lanczosSumExpgScaledNum = [...]float64{
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
449.9445569063168119446858607650988409623,
6955.999602515376140356310115515198987526,
75999.29304014542649875303443598909137092,
601859.6171681098786670226533699352302507,
3481712.15498064590882071018964774556468,
14605578.08768506808414169982791359218571,
43338889.32467613834773723740590533316085,
86363131.28813859145546927288977868422342,
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859,
}
var lanczosSumExpgScaledDenom = [...]float64{
1,
66,
1925,
32670,
357423,
2637558,
13339535,
45995730,
105258076,
150917976,
120543840,
39916800,
0,
}
var lanczosSumNear1D = [...]float64{
0.3394643171893132535170101292240837927725e-9,
-0.2499505151487868335680273909354071938387e-8,
0.8690926181038057039526127422002498960172e-8,
-0.1933117898880828348692541394841204288047e-7,
0.3075580174791348492737947340039992829546e-7,
-0.2752907702903126466004207345038327818713e-7,
-0.1515973019871092388943437623825208095123e-5,
0.004785200610085071473880915854204301886437,
-0.1993758927614728757314233026257810172008,
1.483082862367253753040442933770164111678,
-3.327150580651624233553677113928873034916,
2.208709979316623790862569924861841433016,
}
var lanczosSumNear2D = [...]float64{
0.1009141566987569892221439918230042368112e-8,
-0.7430396708998719707642735577238449585822e-8,
0.2583592566524439230844378948704262291927e-7,
-0.5746670642147041587497159649318454348117e-7,
0.9142922068165324132060550591210267992072e-7,
-0.8183698410724358930823737982119474130069e-7,
-0.4506604409707170077136555010018549819192e-5,
0.01422519127192419234315002746252160965831,
-0.5926941084905061794445733628891024027949,
4.408830289125943377923077727900630927902,
-9.8907772644920670589288081640128194231,
6.565936202082889535528455955485877361223,
}
const lanczosG = 6.024680040776729583740234375
func lanczosSum(x float64) float64 {
return ratevl(x,
lanczosNum[:],
len(lanczosNum)-1,
lanczosDenom[:],
len(lanczosDenom)-1)
}
func lanczosSumExpgScaled(x float64) float64 {
return ratevl(x,
lanczosSumExpgScaledNum[:],
len(lanczosSumExpgScaledNum)-1,
lanczosSumExpgScaledDenom[:],
len(lanczosSumExpgScaledDenom)-1)
}
func lanczosSumNear1(dx float64) float64 {
var result float64
for i, val := range lanczosSumNear1D {
k := float64(i + 1)
result += (-val * dx) / (k*dx + k*k)
}
return result
}
func lanczosSumNear2(dx float64) float64 {
var result float64
x := dx + 2
for i, val := range lanczosSumNear2D {
k := float64(i + 1)
result += (-val * dx) / (x + k*x + k*k - 1)
}
return result
}
|