1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
* Cephes Math Library Release 2.1: January, 1989
* Copyright 1984, 1987, 1989 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
package cephes
import "math"
// TODO(btracey): There is currently an implementation of this functionality
// in gonum/stat/distuv. Find out which implementation is better, and rectify
// by having distuv call this, or moving this implementation into
// gonum/mathext/internal/gonum.
// math.Sqrt(2*pi)
const s2pi = 2.50662827463100050242e0
// approximation for 0 <= |y - 0.5| <= 3/8
var P0 = [5]float64{
-5.99633501014107895267e1,
9.80010754185999661536e1,
-5.66762857469070293439e1,
1.39312609387279679503e1,
-1.23916583867381258016e0,
}
var Q0 = [8]float64{
/* 1.00000000000000000000E0, */
1.95448858338141759834e0,
4.67627912898881538453e0,
8.63602421390890590575e1,
-2.25462687854119370527e2,
2.00260212380060660359e2,
-8.20372256168333339912e1,
1.59056225126211695515e1,
-1.18331621121330003142e0,
}
// Approximation for interval z = math.Sqrt(-2 log y ) between 2 and 8
// i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
var P1 = [9]float64{
4.05544892305962419923e0,
3.15251094599893866154e1,
5.71628192246421288162e1,
4.40805073893200834700e1,
1.46849561928858024014e1,
2.18663306850790267539e0,
-1.40256079171354495875e-1,
-3.50424626827848203418e-2,
-8.57456785154685413611e-4,
}
var Q1 = [8]float64{
/* 1.00000000000000000000E0, */
1.57799883256466749731e1,
4.53907635128879210584e1,
4.13172038254672030440e1,
1.50425385692907503408e1,
2.50464946208309415979e0,
-1.42182922854787788574e-1,
-3.80806407691578277194e-2,
-9.33259480895457427372e-4,
}
// Approximation for interval z = math.Sqrt(-2 log y ) between 8 and 64
// i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
var P2 = [9]float64{
3.23774891776946035970e0,
6.91522889068984211695e0,
3.93881025292474443415e0,
1.33303460815807542389e0,
2.01485389549179081538e-1,
1.23716634817820021358e-2,
3.01581553508235416007e-4,
2.65806974686737550832e-6,
6.23974539184983293730e-9,
}
var Q2 = [8]float64{
/* 1.00000000000000000000E0, */
6.02427039364742014255e0,
3.67983563856160859403e0,
1.37702099489081330271e0,
2.16236993594496635890e-1,
1.34204006088543189037e-2,
3.28014464682127739104e-4,
2.89247864745380683936e-6,
6.79019408009981274425e-9,
}
// Ndtri returns the argument, x, for which the area under the
// Gaussian probability density function (integrated from
// minus infinity to x) is equal to y.
func Ndtri(y0 float64) float64 {
// For small arguments 0 < y < exp(-2), the program computes
// z = math.Sqrt( -2.0 * math.Log(y) ); then the approximation is
// x = z - math.Log(z)/z - (1/z) P(1/z) / Q(1/z).
// There are two rational functions P/Q, one for 0 < y < exp(-32)
// and the other for y up to exp(-2). For larger arguments,
// w = y - 0.5, and x/math.Sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
var x, y, z, y2, x0, x1 float64
var code int
if y0 <= 0.0 {
if y0 < 0 {
panic(paramOutOfBounds)
}
return math.Inf(-1)
}
if y0 >= 1.0 {
if y0 > 1 {
panic(paramOutOfBounds)
}
return math.Inf(1)
}
code = 1
y = y0
if y > (1.0 - 0.13533528323661269189) { /* 0.135... = exp(-2) */
y = 1.0 - y
code = 0
}
if y > 0.13533528323661269189 {
y = y - 0.5
y2 = y * y
x = y + y*(y2*polevl(y2, P0[:], 4)/p1evl(y2, Q0[:], 8))
x = x * s2pi
return (x)
}
x = math.Sqrt(-2.0 * math.Log(y))
x0 = x - math.Log(x)/x
z = 1.0 / x
if x < 8.0 { /* y > exp(-32) = 1.2664165549e-14 */
x1 = z * polevl(z, P1[:], 8) / p1evl(z, Q1[:], 8)
} else {
x1 = z * polevl(z, P2[:], 8) / p1evl(z, Q2[:], 8)
}
x = x0 - x1
if code != 0 {
x = -x
}
return (x)
}
|