1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
// Derived from SciPy's special/cephes/unity.c
// https://github.com/scipy/scipy/blob/master/scipy/special/cephes/unity.c
// Made freely available by Stephen L. Moshier without support or guarantee.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright ©1984, ©1996 by Stephen L. Moshier
// Portions Copyright ©2016 The Gonum Authors. All rights reserved.
package cephes
import "math"
// Relative error approximations for function arguments near unity.
// log1p(x) = log(1+x)
// expm1(x) = exp(x) - 1
// cosm1(x) = cos(x) - 1
// lgam1p(x) = lgam(1+x)
const (
invSqrt2 = 1 / math.Sqrt2
pi4 = math.Pi / 4
euler = 0.577215664901532860606512090082402431 // Euler constant
)
// Coefficients for
//
// log(1+x) = x - \frac{x^2}{2} + \frac{x^3 lP(x)}{lQ(x)}
//
// for
//
// \frac{1}{\sqrt{2}} <= x < \sqrt{2}
//
// Theoretical peak relative error = 2.32e-20
var lP = [...]float64{
4.5270000862445199635215e-5,
4.9854102823193375972212e-1,
6.5787325942061044846969e0,
2.9911919328553073277375e1,
6.0949667980987787057556e1,
5.7112963590585538103336e1,
2.0039553499201281259648e1,
}
var lQ = [...]float64{
1.5062909083469192043167e1,
8.3047565967967209469434e1,
2.2176239823732856465394e2,
3.0909872225312059774938e2,
2.1642788614495947685003e2,
6.0118660497603843919306e1,
}
// log1p computes
//
// log(1 + x)
func log1p(x float64) float64 {
z := 1 + x
if z < invSqrt2 || z > math.Sqrt2 {
return math.Log(z)
}
z = x * x
z = -0.5*z + x*(z*polevl(x, lP[:], 6)/p1evl(x, lQ[:], 6))
return x + z
}
// log1pmx computes
//
// log(1 + x) - x
func log1pmx(x float64) float64 {
if math.Abs(x) < 0.5 {
xfac := x
res := 0.0
var term float64
for n := 2; n < maxIter; n++ {
xfac *= -x
term = xfac / float64(n)
res += term
if math.Abs(term) < machEp*math.Abs(res) {
break
}
}
return res
}
return log1p(x) - x
}
// Coefficients for
//
// e^x = 1 + \frac{2x eP(x^2)}{eQ(x^2) - eP(x^2)}
//
// for
//
// -0.5 <= x <= 0.5
var eP = [...]float64{
1.2617719307481059087798e-4,
3.0299440770744196129956e-2,
9.9999999999999999991025e-1,
}
var eQ = [...]float64{
3.0019850513866445504159e-6,
2.5244834034968410419224e-3,
2.2726554820815502876593e-1,
2.0000000000000000000897e0,
}
// expm1 computes
//
// expm1(x) = e^x - 1
func expm1(x float64) float64 {
if math.IsInf(x, 0) {
if math.IsNaN(x) || x > 0 {
return x
}
return -1
}
if x < -0.5 || x > 0.5 {
return math.Exp(x) - 1
}
xx := x * x
r := x * polevl(xx, eP[:], 2)
r = r / (polevl(xx, eQ[:], 3) - r)
return r + r
}
var coscof = [...]float64{
4.7377507964246204691685e-14,
-1.1470284843425359765671e-11,
2.0876754287081521758361e-9,
-2.7557319214999787979814e-7,
2.4801587301570552304991e-5,
-1.3888888888888872993737e-3,
4.1666666666666666609054e-2,
}
// cosm1 computes
//
// cosm1(x) = cos(x) - 1
func cosm1(x float64) float64 {
if x < -pi4 || x > pi4 {
return math.Cos(x) - 1
}
xx := x * x
xx = -0.5*xx + xx*xx*polevl(xx, coscof[:], 6)
return xx
}
// lgam1pTayler computes
//
// lgam(x + 1)
//
// around x = 0 using its Taylor series.
func lgam1pTaylor(x float64) float64 {
if x == 0 {
return 0
}
res := -euler * x
xfac := -x
for n := 2; n < 42; n++ {
nf := float64(n)
xfac *= -x
coeff := Zeta(nf, 1) * xfac / nf
res += coeff
if math.Abs(coeff) < machEp*math.Abs(res) {
break
}
}
return res
}
// lgam1p computes
//
// lgam(x + 1)
func lgam1p(x float64) float64 {
if math.Abs(x) <= 0.5 {
return lgam1pTaylor(x)
} else if math.Abs(x-1) < 0.5 {
return math.Log(x) + lgam1pTaylor(x-1)
}
return lgam(x + 1)
}
|