1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// Derived from SciPy's special/c_misc/fsolve.c and special/c_misc/misc.h
// https://github.com/scipy/scipy/blob/master/scipy/special/c_misc/fsolve.c
// https://github.com/scipy/scipy/blob/master/scipy/special/c_misc/misc.h
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mathext
import "math"
type objectiveFunc func(float64, []float64) float64
type fSolveResult uint8
const (
// An exact solution was found, in which case the first point on the
// interval is the value
fSolveExact fSolveResult = iota + 1
// Interval width is less than the tolerance
fSolveConverged
// Root-finding didn't converge in a set number of iterations
fSolveMaxIterations
)
const (
machEp = 1.0 / (1 << 53)
)
// falsePosition uses a combination of bisection and false position to find a
// root of a function within a given interval. This is guaranteed to converge,
// and always keeps a bounding interval, unlike Newton's method. Inputs are:
//
// x1, x2: initial bounding interval
// f1, f2: value of f() at x1 and x2
// absErr, relErr: absolute and relative errors on the bounding interval
// bisectTil: if > 0.0, perform bisection until the width of the bounding
// interval is less than this
// f, fExtra: function to find root of is f(x, fExtra)
//
// Returns:
//
// result: whether an exact root was found, the process converged to a
// bounding interval small than the required error, or the max number
// of iterations was hit
// bestX: best root approximation
// bestF: function value at bestX
// errEst: error estimation
func falsePosition(x1, x2, f1, f2, absErr, relErr, bisectTil float64, f objectiveFunc, fExtra []float64) (fSolveResult, float64, float64, float64) {
// The false position steps are either unmodified, or modified with the
// Anderson-Bjorck method as appropriate. Theoretically, this has a "speed of
// convergence" of 1.7 (bisection is 1, Newton is 2).
// Note that this routine was designed initially to work with gammaincinv, so
// it may not be tuned right for other problems. Don't use it blindly.
if f1*f2 >= 0 {
panic("Initial interval is not a bounding interval")
}
const (
maxIterations = 100
bisectIter = 4
bisectWidth = 4.0
)
const (
bisect = iota + 1
falseP
)
var state uint8
if bisectTil > 0 {
state = bisect
} else {
state = falseP
}
gamma := 1.0
w := math.Abs(x2 - x1)
lastBisectWidth := w
var nFalseP int
var x3, f3, bestX, bestF float64
for i := 0; i < maxIterations; i++ {
switch state {
case bisect:
x3 = 0.5 * (x1 + x2)
if x3 == x1 || x3 == x2 {
// i.e., x1 and x2 are successive floating-point numbers
bestX = x3
if x3 == x1 {
bestF = f1
} else {
bestF = f2
}
return fSolveConverged, bestX, bestF, w
}
f3 = f(x3, fExtra)
if f3 == 0 {
return fSolveExact, x3, f3, w
}
if f3*f2 < 0 {
x1 = x2
f1 = f2
}
x2 = x3
f2 = f3
w = math.Abs(x2 - x1)
lastBisectWidth = w
if bisectTil > 0 {
if w < bisectTil {
bisectTil = -1.0
gamma = 1.0
nFalseP = 0
state = falseP
}
} else {
gamma = 1.0
nFalseP = 0
state = falseP
}
case falseP:
s12 := (f2 - gamma*f1) / (x2 - x1)
x3 = x2 - f2/s12
f3 = f(x3, fExtra)
if f3 == 0 {
return fSolveExact, x3, f3, w
}
nFalseP++
if f3*f2 < 0 {
gamma = 1.0
x1 = x2
f1 = f2
} else {
// Anderson-Bjorck method
g := 1.0 - f3/f2
if g <= 0 {
g = 0.5
}
gamma *= g
}
x2 = x3
f2 = f3
w = math.Abs(x2 - x1)
// Sanity check. For every 4 false position checks, see if we really are
// decreasing the interval by comparing to what bisection would have
// achieved (or, rather, a bit more lenient than that -- interval
// decreased by 4 instead of by 16, as the fp could be decreasing gamma
// for a bit). Note that this should guarantee convergence, as it makes
// sure that we always end up decreasing the interval width with a
// bisection.
if nFalseP > bisectIter {
if w*bisectWidth > lastBisectWidth {
state = bisect
}
nFalseP = 0
lastBisectWidth = w
}
}
tol := absErr + relErr*math.Max(math.Max(math.Abs(x1), math.Abs(x2)), 1.0)
if w <= tol {
if math.Abs(f1) < math.Abs(f2) {
bestX = x1
bestF = f1
} else {
bestX = x2
bestF = f2
}
return fSolveConverged, bestX, bestF, w
}
}
return fSolveMaxIterations, x3, f3, w
}
|