1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hyperdual
import (
"fmt"
"math"
"strings"
)
// Number is a float64 precision hyperdual number.
type Number struct {
Real, E1mag, E2mag, E1E2mag float64
}
var negZero = math.Float64frombits(1 << 63)
// Format implements fmt.Formatter.
func (d Number) Format(fs fmt.State, c rune) {
prec, pOk := fs.Precision()
if !pOk {
prec = -1
}
width, wOk := fs.Width()
if !wOk {
width = -1
}
switch c {
case 'v':
if fs.Flag('#') {
fmt.Fprintf(fs, "%T{Real:%#v, E1mag:%#v, E2mag:%#v, E1E2mag:%#v}", d, d.Real, d.E1mag, d.E2mag, d.E1E2mag)
return
}
if fs.Flag('+') {
fmt.Fprintf(fs, "{Real:%+v, E1mag:%+v, E2mag:%+v, E1E2mag:%+v}", d.Real, d.E1mag, d.E2mag, d.E1E2mag)
return
}
c = 'g'
prec = -1
fallthrough
case 'e', 'E', 'f', 'F', 'g', 'G':
fre := fmtString(fs, c, prec, width, false)
fim := fmtString(fs, c, prec, width, true)
fmt.Fprintf(fs, fmt.Sprintf("(%s%[2]sϵ₁%[2]sϵ₂%[2]sϵ₁ϵ₂)", fre, fim), d.Real, d.E1mag, d.E2mag, d.E1E2mag)
default:
fmt.Fprintf(fs, "%%!%c(%T=%[2]v)", c, d)
return
}
}
// This is horrible, but it's what we have.
func fmtString(fs fmt.State, c rune, prec, width int, wantPlus bool) string {
var b strings.Builder
b.WriteByte('%')
for _, f := range "0+- " {
if fs.Flag(int(f)) || (f == '+' && wantPlus) {
b.WriteByte(byte(f))
}
}
if width >= 0 {
fmt.Fprint(&b, width)
}
if prec >= 0 {
b.WriteByte('.')
if prec > 0 {
fmt.Fprint(&b, prec)
}
}
b.WriteRune(c)
return b.String()
}
// Add returns the sum of x and y.
func Add(x, y Number) Number {
return Number{
Real: x.Real + y.Real,
E1mag: x.E1mag + y.E1mag,
E2mag: x.E2mag + y.E2mag,
E1E2mag: x.E1E2mag + y.E1E2mag,
}
}
// Sub returns the difference of x and y, x-y.
func Sub(x, y Number) Number {
return Number{
Real: x.Real - y.Real,
E1mag: x.E1mag - y.E1mag,
E2mag: x.E2mag - y.E2mag,
E1E2mag: x.E1E2mag - y.E1E2mag,
}
}
// Mul returns the hyperdual product of x and y.
func Mul(x, y Number) Number {
return Number{
Real: x.Real * y.Real,
E1mag: x.Real*y.E1mag + x.E1mag*y.Real,
E2mag: x.Real*y.E2mag + x.E2mag*y.Real,
E1E2mag: x.Real*y.E1E2mag + x.E1mag*y.E2mag + x.E2mag*y.E1mag + x.E1E2mag*y.Real,
}
}
// Inv returns the hyperdual inverse of d.
//
// Special cases are:
//
// Inv(±Inf) = ±0-0ϵ₁-0ϵ₂±0ϵ₁ϵ₂
// Inv(±0) = ±Inf-Infϵ₁-Infϵ₂±Infϵ₁ϵ₂
func Inv(d Number) Number {
if d.Real == 0 {
return Number{
Real: 1 / d.Real,
E1mag: math.Inf(-1),
E2mag: math.Inf(-1),
E1E2mag: 1 / d.Real, // Return a signed inf from a signed zero.
}
}
d2 := d.Real * d.Real
return Number{
Real: 1 / d.Real,
E1mag: -d.E1mag / d2,
E2mag: -d.E2mag / d2,
E1E2mag: -d.E1E2mag/d2 + 2*d.E1mag*d.E2mag/(d2*d.Real),
}
}
// Scale returns d scaled by f.
func Scale(f float64, d Number) Number {
return Number{Real: f * d.Real, E1mag: f * d.E1mag, E2mag: f * d.E2mag, E1E2mag: f * d.E1E2mag}
}
// Abs returns the absolute value of d.
func Abs(d Number) Number {
if math.Float64bits(d.Real)&(1<<63) == 0 {
return d
}
return Scale(-1, d)
}
|