1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Derived from code by Jeffrey A. Fike at http://adl.stanford.edu/hyperdual/
// The MIT License (MIT)
//
// Copyright (c) 2006 Jeffrey A. Fike
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package hyperdual
import "math"
// PowReal returns x**p, the base-x exponential of p.
//
// Special cases are (in order):
//
// PowReal(NaN+xϵ₁+yϵ₂, ±0) = 1+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for any x and y
// PowReal(x, ±0) = 1 for any x
// PowReal(1+xϵ₁+yϵ₂, z) = 1+xzϵ₁+yzϵ₂+2xyzϵ₁ϵ₂ for any z
// PowReal(NaN+xϵ₁+yϵ₂, 1) = NaN+xϵ₁+yϵ₂+NaNϵ₁ϵ₂ for any x
// PowReal(x, 1) = x for any x
// PowReal(NaN+xϵ₁+xϵ₂, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂
// PowReal(x, NaN) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂
// PowReal(±0, y) = ±Inf for y an odd integer < 0
// PowReal(±0, -Inf) = +Inf
// PowReal(±0, +Inf) = +0
// PowReal(±0, y) = +Inf for finite y < 0 and not an odd integer
// PowReal(±0, y) = ±0 for y an odd integer > 0
// PowReal(±0, y) = +0 for finite y > 0 and not an odd integer
// PowReal(-1, ±Inf) = 1
// PowReal(x+0ϵ₁+0ϵ₂, +Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1
// PowReal(x+xϵ₁+yϵ₂, +Inf) = +Inf+Infϵ₁+Infϵ₂+NaNϵ₁ϵ₂ for |x| > 1
// PowReal(x, -Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1
// PowReal(x+yϵ₁+zϵ₂, +Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1
// PowReal(x+0ϵ₁+0ϵ₂, -Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1
// PowReal(x, -Inf) = +Inf-Infϵ₁-Infϵ₂+NaNϵ₁ϵ₂ for |x| < 1
// PowReal(+Inf, y) = +Inf for y > 0
// PowReal(+Inf, y) = +0 for y < 0
// PowReal(-Inf, y) = Pow(-0, -y)
// PowReal(x, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for finite x < 0 and finite non-integer y
func PowReal(d Number, p float64) Number {
const tol = 1e-15
r := d.Real
if math.Abs(r) < tol {
if r >= 0 {
r = tol
}
if r < 0 {
r = -tol
}
}
deriv := p * math.Pow(r, p-1)
return Number{
Real: math.Pow(d.Real, p),
E1mag: d.E1mag * deriv,
E2mag: d.E2mag * deriv,
E1E2mag: d.E1E2mag*deriv + p*(p-1)*d.E1mag*d.E2mag*math.Pow(r, (p-2)),
}
}
// Pow returns x**p, the base-x exponential of p.
func Pow(d, p Number) Number {
return Exp(Mul(p, Log(d)))
}
// Sqrt returns the square root of d.
//
// Special cases are:
//
// Sqrt(+Inf) = +Inf
// Sqrt(±0) = (±0+Infϵ₁+Infϵ₂-Infϵ₁ϵ₂)
// Sqrt(x < 0) = NaN
// Sqrt(NaN) = NaN
func Sqrt(d Number) Number {
if d.Real <= 0 {
if d.Real == 0 {
return Number{
Real: d.Real,
E1mag: math.Inf(1),
E2mag: math.Inf(1),
E1E2mag: math.Inf(-1),
}
}
return Number{
Real: math.NaN(),
E1mag: math.NaN(),
E2mag: math.NaN(),
E1E2mag: math.NaN(),
}
}
return PowReal(d, 0.5)
}
// Exp returns e**q, the base-e exponential of d.
//
// Special cases are:
//
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
//
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
func Exp(d Number) Number {
exp := math.Exp(d.Real) // exp is also the derivative.
return Number{
Real: exp,
E1mag: exp * d.E1mag,
E2mag: exp * d.E2mag,
E1E2mag: exp * (d.E1E2mag + d.E1mag*d.E2mag),
}
}
// Log returns the natural logarithm of d.
//
// Special cases are:
//
// Log(+Inf) = (+Inf+0ϵ₁+0ϵ₂-0ϵ₁ϵ₂)
// Log(0) = (-Inf±Infϵ₁±Infϵ₂-Infϵ₁ϵ₂)
// Log(x < 0) = NaN
// Log(NaN) = NaN
func Log(d Number) Number {
switch d.Real {
case 0:
return Number{
Real: math.Log(d.Real),
E1mag: math.Copysign(math.Inf(1), d.Real),
E2mag: math.Copysign(math.Inf(1), d.Real),
E1E2mag: math.Inf(-1),
}
case math.Inf(1):
return Number{
Real: math.Log(d.Real),
E1mag: 0,
E2mag: 0,
E1E2mag: negZero,
}
}
if d.Real < 0 {
return Number{
Real: math.NaN(),
E1mag: math.NaN(),
E2mag: math.NaN(),
E1E2mag: math.NaN(),
}
}
deriv1 := d.E1mag / d.Real
deriv2 := d.E2mag / d.Real
return Number{
Real: math.Log(d.Real),
E1mag: deriv1,
E2mag: deriv2,
E1E2mag: d.E1E2mag/d.Real - (deriv1 * deriv2),
}
}
// Sin returns the sine of d.
//
// Special cases are:
//
// Sin(±0) = (±0+Nϵ₁+Nϵ₂∓0ϵ₁ϵ₂)
// Sin(±Inf) = NaN
// Sin(NaN) = NaN
func Sin(d Number) Number {
if d.Real == 0 {
return Number{
Real: d.Real,
E1mag: d.E1mag,
E2mag: d.E2mag,
E1E2mag: -d.Real,
}
}
fn := math.Sin(d.Real)
deriv := math.Cos(d.Real)
return Number{
Real: fn,
E1mag: deriv * d.E1mag,
E2mag: deriv * d.E2mag,
E1E2mag: deriv*d.E1E2mag - fn*d.E1mag*d.E2mag,
}
}
// Cos returns the cosine of d.
//
// Special cases are:
//
// Cos(±Inf) = NaN
// Cos(NaN) = NaN
func Cos(d Number) Number {
fn := math.Cos(d.Real)
deriv := -math.Sin(d.Real)
return Number{
Real: fn,
E1mag: deriv * d.E1mag,
E2mag: deriv * d.E2mag,
E1E2mag: deriv*d.E1E2mag - fn*d.E1mag*d.E2mag,
}
}
// Tan returns the tangent of d.
//
// Special cases are:
//
// Tan(±0) = (±0+Nϵ₁+Nϵ₂±0ϵ₁ϵ₂)
// Tan(±Inf) = NaN
// Tan(NaN) = NaN
func Tan(d Number) Number {
if d.Real == 0 {
return Number{
Real: d.Real,
E1mag: d.E1mag,
E2mag: d.E2mag,
E1E2mag: d.Real,
}
}
fn := math.Tan(d.Real)
deriv := 1 + fn*fn
return Number{
Real: fn,
E1mag: deriv * d.E1mag,
E2mag: deriv * d.E2mag,
E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(2*fn*deriv),
}
}
// Asin returns the inverse sine of d.
//
// Special cases are:
//
// Asin(±0) = (±0+Nϵ₁+Nϵ₂±0ϵ₁ϵ₂)
// Asin(±1) = (±Inf+Infϵ₁+Infϵ₂±Infϵ₁ϵ₂)
// Asin(x) = NaN if x < -1 or x > 1
func Asin(d Number) Number {
if d.Real == 0 {
return Number{
Real: d.Real,
E1mag: d.E1mag,
E2mag: d.E2mag,
E1E2mag: d.Real,
}
} else if m := math.Abs(d.Real); m >= 1 {
if m == 1 {
return Number{
Real: math.Asin(d.Real),
E1mag: math.Inf(1),
E2mag: math.Inf(1),
E1E2mag: math.Copysign(math.Inf(1), d.Real),
}
}
return Number{
Real: math.NaN(),
E1mag: math.NaN(),
E2mag: math.NaN(),
E1E2mag: math.NaN(),
}
}
fn := math.Asin(d.Real)
deriv1 := 1 - d.Real*d.Real
deriv := 1 / math.Sqrt(deriv1)
return Number{
Real: fn,
E1mag: deriv * d.E1mag,
E2mag: deriv * d.E2mag,
E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(d.Real*math.Pow(deriv1, -1.5)),
}
}
// Acos returns the inverse cosine of d.
//
// Special cases are:
//
// Acos(-1) = (Pi-Infϵ₁-Infϵ₂+Infϵ₁ϵ₂)
// Acos(1) = (0-Infϵ₁-Infϵ₂-Infϵ₁ϵ₂)
// Acos(x) = NaN if x < -1 or x > 1
func Acos(d Number) Number {
if m := math.Abs(d.Real); m >= 1 {
if m == 1 {
return Number{
Real: math.Acos(d.Real),
E1mag: math.Inf(-1),
E2mag: math.Inf(-1),
E1E2mag: math.Copysign(math.Inf(1), -d.Real),
}
}
return Number{
Real: math.NaN(),
E1mag: math.NaN(),
E2mag: math.NaN(),
E1E2mag: math.NaN(),
}
}
fn := math.Acos(d.Real)
deriv1 := 1 - d.Real*d.Real
deriv := -1 / math.Sqrt(deriv1)
return Number{
Real: fn,
E1mag: deriv * d.E1mag,
E2mag: deriv * d.E2mag,
E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(-d.Real*math.Pow(deriv1, -1.5)),
}
}
// Atan returns the inverse tangent of d.
//
// Special cases are:
//
// Atan(±0) = (±0+Nϵ₁+Nϵ₂∓0ϵ₁ϵ₂)
// Atan(±Inf) = (±Pi/2+0ϵ₁+0ϵ₂∓0ϵ₁ϵ₂)
func Atan(d Number) Number {
if d.Real == 0 {
return Number{
Real: d.Real,
E1mag: d.E1mag,
E2mag: d.E2mag,
E1E2mag: -d.Real,
}
}
fn := math.Atan(d.Real)
deriv1 := 1 + d.Real*d.Real
deriv := 1 / deriv1
return Number{
Real: fn,
E1mag: deriv * d.E1mag,
E2mag: deriv * d.E2mag,
E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(-2*d.Real/(deriv1*deriv1)),
}
}
|