1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import (
"math"
"sort"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat/distmv"
)
var _ Method = (*CmaEsChol)(nil)
// TODO(btracey): If we ever implement the traditional CMA-ES algorithm, provide
// the base explanation there, and modify this description to just
// describe the differences.
// CmaEsChol implements the covariance matrix adaptation evolution strategy (CMA-ES)
// based on the Cholesky decomposition. The full algorithm is described in
//
// Krause, Oswin, Dídac Rodríguez Arbonès, and Christian Igel. "CMA-ES with
// optimal covariance update and storage complexity." Advances in Neural
// Information Processing Systems. 2016.
// https://papers.nips.cc/paper/6457-cma-es-with-optimal-covariance-update-and-storage-complexity.pdf
//
// CMA-ES is a global optimization method that progressively adapts a population
// of samples. CMA-ES combines techniques from local optimization with global
// optimization. Specifically, the CMA-ES algorithm uses an initial multivariate
// normal distribution to generate a population of input locations. The input locations
// with the lowest function values are used to update the parameters of the normal
// distribution, a new set of input locations are generated, and this procedure
// is iterated until convergence. The initial sampling distribution will have
// a mean specified by the initial x location, and a covariance specified by
// the InitCholesky field.
//
// As the normal distribution is progressively updated according to the best samples,
// it can be that the mean of the distribution is updated in a gradient-descent
// like fashion, followed by a shrinking covariance.
// It is recommended that the algorithm be run multiple times (with different
// InitMean) to have a better chance of finding the global minimum.
//
// The CMA-ES-Chol algorithm differs from the standard CMA-ES algorithm in that
// it directly updates the Cholesky decomposition of the normal distribution.
// This changes the runtime from O(dimension^3) to O(dimension^2*population)
// The evolution of the multi-variate normal will be similar to the baseline
// CMA-ES algorithm, but the covariance update equation is not identical.
//
// For more information about the CMA-ES algorithm, see
//
// https://en.wikipedia.org/wiki/CMA-ES
// https://arxiv.org/pdf/1604.00772.pdf
type CmaEsChol struct {
// InitStepSize sets the initial size of the covariance matrix adaptation.
// If InitStepSize is 0, a default value of 0.5 is used. InitStepSize cannot
// be negative, or CmaEsChol will panic.
InitStepSize float64
// Population sets the population size for the algorithm. If Population is
// 0, a default value of 4 + math.Floor(3*math.Log(float64(dim))) is used.
// Population cannot be negative or CmaEsChol will panic.
Population int
// InitCholesky specifies the Cholesky decomposition of the covariance
// matrix for the initial sampling distribution. If InitCholesky is nil,
// a default value of I is used. If it is non-nil, then it must have
// InitCholesky.Size() be equal to the problem dimension.
InitCholesky *mat.Cholesky
// StopLogDet sets the threshold for stopping the optimization if the
// distribution becomes too peaked. The log determinant is a measure of the
// (log) "volume" of the normal distribution, and when it is too small
// the samples are almost the same. If the log determinant of the covariance
// matrix becomes less than StopLogDet, the optimization run is concluded.
// If StopLogDet is 0, a default value of dim*log(1e-16) is used.
// If StopLogDet is NaN, the stopping criterion is not used, though
// this can cause numeric instabilities in the algorithm.
StopLogDet float64
// ForgetBest, when true, does not track the best overall function value found,
// instead returning the new best sample in each iteration. If ForgetBest
// is false, then the minimum value returned will be the lowest across all
// iterations, regardless of when that sample was generated.
ForgetBest bool
// Src allows a random number generator to be supplied for generating samples.
// If Src is nil the generator in golang.org/x/math/rand is used.
Src rand.Source
// Fixed algorithm parameters.
dim int
pop int
weights []float64
muEff float64
cc, cs, c1, cmu, ds float64
eChi float64
// Function data.
xs *mat.Dense
fs []float64
// Adaptive algorithm parameters.
invSigma float64 // inverse of the sigma parameter
pc, ps []float64
mean []float64
chol mat.Cholesky
// Overall best.
bestX []float64
bestF float64
// Synchronization.
sentIdx int
receivedIdx int
operation chan<- Task
updateErr error
}
var (
_ Statuser = (*CmaEsChol)(nil)
_ Method = (*CmaEsChol)(nil)
)
func (cma *CmaEsChol) methodConverged() Status {
sd := cma.StopLogDet
switch {
case math.IsNaN(sd):
return NotTerminated
case sd == 0:
sd = float64(cma.dim) * -36.8413614879 // ln(1e-16)
}
if cma.chol.LogDet() < sd {
return MethodConverge
}
return NotTerminated
}
// Status returns the status of the method.
func (cma *CmaEsChol) Status() (Status, error) {
if cma.updateErr != nil {
return Failure, cma.updateErr
}
return cma.methodConverged(), nil
}
func (*CmaEsChol) Uses(has Available) (uses Available, err error) {
return has.function()
}
func (cma *CmaEsChol) Init(dim, tasks int) int {
if dim <= 0 {
panic(nonpositiveDimension)
}
if tasks < 0 {
panic(negativeTasks)
}
// Set fixed algorithm parameters.
// Parameter values are from https://arxiv.org/pdf/1604.00772.pdf .
cma.dim = dim
cma.pop = cma.Population
n := float64(dim)
if cma.pop == 0 {
cma.pop = 4 + int(3*math.Log(n)) // Note the implicit floor.
} else if cma.pop < 0 {
panic("cma-es-chol: negative population size")
}
mu := cma.pop / 2
cma.weights = resize(cma.weights, mu)
for i := range cma.weights {
v := math.Log(float64(mu)+0.5) - math.Log(float64(i)+1)
cma.weights[i] = v
}
floats.Scale(1/floats.Sum(cma.weights), cma.weights)
cma.muEff = 0
for _, v := range cma.weights {
cma.muEff += v * v
}
cma.muEff = 1 / cma.muEff
cma.cc = (4 + cma.muEff/n) / (n + 4 + 2*cma.muEff/n)
cma.cs = (cma.muEff + 2) / (n + cma.muEff + 5)
cma.c1 = 2 / ((n+1.3)*(n+1.3) + cma.muEff)
cma.cmu = math.Min(1-cma.c1, 2*(cma.muEff-2+1/cma.muEff)/((n+2)*(n+2)+cma.muEff))
cma.ds = 1 + 2*math.Max(0, math.Sqrt((cma.muEff-1)/(n+1))-1) + cma.cs
// E[chi] is taken from https://en.wikipedia.org/wiki/CMA-ES (there
// listed as E[||N(0,1)||]).
cma.eChi = math.Sqrt(n) * (1 - 1.0/(4*n) + 1/(21*n*n))
// Allocate memory for function data.
cma.xs = mat.NewDense(cma.pop, dim, nil)
cma.fs = resize(cma.fs, cma.pop)
// Allocate and initialize adaptive parameters.
cma.invSigma = 1 / cma.InitStepSize
if cma.InitStepSize == 0 {
cma.invSigma = 10.0 / 3
} else if cma.InitStepSize < 0 {
panic("cma-es-chol: negative initial step size")
}
cma.pc = resize(cma.pc, dim)
for i := range cma.pc {
cma.pc[i] = 0
}
cma.ps = resize(cma.ps, dim)
for i := range cma.ps {
cma.ps[i] = 0
}
cma.mean = resize(cma.mean, dim) // mean location initialized at the start of Run
if cma.InitCholesky != nil {
if cma.InitCholesky.SymmetricDim() != dim {
panic("cma-es-chol: incorrect InitCholesky size")
}
cma.chol.Clone(cma.InitCholesky)
} else {
// Set the initial Cholesky to I.
b := mat.NewDiagDense(dim, nil)
for i := 0; i < dim; i++ {
b.SetDiag(i, 1)
}
var chol mat.Cholesky
ok := chol.Factorize(b)
if !ok {
panic("cma-es-chol: bad cholesky. shouldn't happen")
}
cma.chol = chol
}
cma.bestX = resize(cma.bestX, dim)
cma.bestF = math.Inf(1)
cma.sentIdx = 0
cma.receivedIdx = 0
cma.operation = nil
cma.updateErr = nil
t := min(tasks, cma.pop)
return t
}
func (cma *CmaEsChol) sendInitTasks(tasks []Task) {
for i, task := range tasks {
cma.sendTask(i, task)
}
cma.sentIdx = len(tasks)
}
// sendTask generates a sample and sends the task. It does not update the cma index.
func (cma *CmaEsChol) sendTask(idx int, task Task) {
task.ID = idx
task.Op = FuncEvaluation
distmv.NormalRand(cma.xs.RawRowView(idx), cma.mean, &cma.chol, cma.Src)
copy(task.X, cma.xs.RawRowView(idx))
cma.operation <- task
}
// bestIdx returns the best index in the functions. Returns -1 if all values
// are NaN.
func (cma *CmaEsChol) bestIdx() int {
best := -1
bestVal := math.Inf(1)
for i, v := range cma.fs {
if math.IsNaN(v) {
continue
}
// Use equality in case somewhere evaluates to +inf.
if v <= bestVal {
best = i
bestVal = v
}
}
return best
}
// findBestAndUpdateTask finds the best task in the current list, updates the
// new best overall, and then stores the best location into task.
func (cma *CmaEsChol) findBestAndUpdateTask(task Task) Task {
// Find and update the best location.
// Don't use floats because there may be NaN values.
best := cma.bestIdx()
bestF := math.NaN()
bestX := cma.xs.RawRowView(0)
if best != -1 {
bestF = cma.fs[best]
bestX = cma.xs.RawRowView(best)
}
if cma.ForgetBest {
task.F = bestF
copy(task.X, bestX)
} else {
if bestF < cma.bestF {
cma.bestF = bestF
copy(cma.bestX, bestX)
}
task.F = cma.bestF
copy(task.X, cma.bestX)
}
return task
}
func (cma *CmaEsChol) Run(operations chan<- Task, results <-chan Task, tasks []Task) {
copy(cma.mean, tasks[0].X)
cma.operation = operations
// Send the initial tasks. We know there are at most as many tasks as elements
// of the population.
cma.sendInitTasks(tasks)
Loop:
for {
result := <-results
switch result.Op {
default:
panic("unknown operation")
case PostIteration:
break Loop
case MajorIteration:
// The last thing we did was update all of the tasks and send the
// major iteration. Now we can send a group of tasks again.
cma.sendInitTasks(tasks)
case FuncEvaluation:
cma.receivedIdx++
cma.fs[result.ID] = result.F
switch {
case cma.sentIdx < cma.pop:
// There are still tasks to evaluate. Send the next.
cma.sendTask(cma.sentIdx, result)
cma.sentIdx++
case cma.receivedIdx < cma.pop:
// All the tasks have been sent, but not all of them have been received.
// Need to wait until all are back.
continue Loop
default:
// All of the evaluations have been received.
if cma.receivedIdx != cma.pop {
panic("bad logic")
}
cma.receivedIdx = 0
cma.sentIdx = 0
task := cma.findBestAndUpdateTask(result)
// Update the parameters and send a MajorIteration or a convergence.
err := cma.update()
// Kill the existing data.
for i := range cma.fs {
cma.fs[i] = math.NaN()
cma.xs.Set(i, 0, math.NaN())
}
switch {
case err != nil:
cma.updateErr = err
task.Op = MethodDone
case cma.methodConverged() != NotTerminated:
task.Op = MethodDone
default:
task.Op = MajorIteration
task.ID = -1
}
operations <- task
}
}
}
// Been told to stop. Clean up.
// Need to see best of our evaluated tasks so far. Should instead just
// collect, then see.
for task := range results {
switch task.Op {
case MajorIteration:
case FuncEvaluation:
cma.fs[task.ID] = task.F
default:
panic("unknown operation")
}
}
// Send the new best value if the evaluation is better than any we've
// found so far. Keep this separate from findBestAndUpdateTask so that
// we only send an iteration if we find a better location.
if !cma.ForgetBest {
best := cma.bestIdx()
if best != -1 && cma.fs[best] < cma.bestF {
task := tasks[0]
task.F = cma.fs[best]
copy(task.X, cma.xs.RawRowView(best))
task.Op = MajorIteration
task.ID = -1
operations <- task
}
}
close(operations)
}
// update computes the new parameters (mean, cholesky, etc.). Does not update
// any of the synchronization parameters (taskIdx).
func (cma *CmaEsChol) update() error {
// Sort the function values to find the elite samples.
ftmp := make([]float64, cma.pop)
copy(ftmp, cma.fs)
indexes := make([]int, cma.pop)
for i := range indexes {
indexes[i] = i
}
sort.Sort(bestSorter{F: ftmp, Idx: indexes})
meanOld := make([]float64, len(cma.mean))
copy(meanOld, cma.mean)
// m_{t+1} = \sum_{i=1}^mu w_i x_i
for i := range cma.mean {
cma.mean[i] = 0
}
for i, w := range cma.weights {
idx := indexes[i] // index of teh 1337 sample.
floats.AddScaled(cma.mean, w, cma.xs.RawRowView(idx))
}
meanDiff := make([]float64, len(cma.mean))
floats.SubTo(meanDiff, cma.mean, meanOld)
// p_{c,t+1} = (1-c_c) p_{c,t} + \sqrt(c_c*(2-c_c)*mueff) (m_{t+1}-m_t)/sigma_t
floats.Scale(1-cma.cc, cma.pc)
scaleC := math.Sqrt(cma.cc*(2-cma.cc)*cma.muEff) * cma.invSigma
floats.AddScaled(cma.pc, scaleC, meanDiff)
// p_{sigma, t+1} = (1-c_sigma) p_{sigma,t} + \sqrt(c_s*(2-c_s)*mueff) A_t^-1 (m_{t+1}-m_t)/sigma_t
floats.Scale(1-cma.cs, cma.ps)
// First compute A_t^-1 (m_{t+1}-m_t), then add the scaled vector.
tmp := make([]float64, cma.dim)
tmpVec := mat.NewVecDense(cma.dim, tmp)
diffVec := mat.NewVecDense(cma.dim, meanDiff)
err := tmpVec.SolveVec(cma.chol.RawU().T(), diffVec)
if err != nil {
return err
}
scaleS := math.Sqrt(cma.cs*(2-cma.cs)*cma.muEff) * cma.invSigma
floats.AddScaled(cma.ps, scaleS, tmp)
// Compute the update to A.
scaleChol := 1 - cma.c1 - cma.cmu
if scaleChol == 0 {
scaleChol = math.SmallestNonzeroFloat64 // enough to kill the old data, but still non-zero.
}
cma.chol.Scale(scaleChol, &cma.chol)
cma.chol.SymRankOne(&cma.chol, cma.c1, mat.NewVecDense(cma.dim, cma.pc))
for i, w := range cma.weights {
idx := indexes[i]
floats.SubTo(tmp, cma.xs.RawRowView(idx), meanOld)
cma.chol.SymRankOne(&cma.chol, cma.cmu*w*cma.invSigma, tmpVec)
}
// sigma_{t+1} = sigma_t exp(c_sigma/d_sigma * norm(p_{sigma,t+1}/ E[chi] -1)
normPs := floats.Norm(cma.ps, 2)
cma.invSigma /= math.Exp(cma.cs / cma.ds * (normPs/cma.eChi - 1))
return nil
}
type bestSorter struct {
F []float64
Idx []int
}
func (b bestSorter) Len() int {
return len(b.F)
}
func (b bestSorter) Less(i, j int) bool {
return b.F[i] < b.F[j]
}
func (b bestSorter) Swap(i, j int) {
b.F[i], b.F[j] = b.F[j], b.F[i]
b.Idx[i], b.Idx[j] = b.Idx[j], b.Idx[i]
}
|