1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lp
import (
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// TODO(btracey): Have some sort of preprocessing step for helping to fix A to make it
// full rank?
// TODO(btracey): Reduce rows? Get rid of all zeros, places where only one variable
// is there, etc. Could be implemented with a Reduce function.
// TODO(btracey): Provide method of artificial variables for help when problem
// is infeasible?
// TODO(btracey): Add an lp.Solve that solves an LP in non-standard form.
// Convert converts a General-form LP into a standard form LP.
// The general form of an LP is:
//
// minimize cᵀ * x
// s.t G * x <= h
// A * x = b
//
// And the standard form is:
//
// minimize cNewᵀ * x
// s.t aNew * x = bNew
// x >= 0
//
// If there are no constraints of the given type, the inputs may be nil.
func Convert(c []float64, g mat.Matrix, h []float64, a mat.Matrix, b []float64) (cNew []float64, aNew *mat.Dense, bNew []float64) {
nVar := len(c)
nIneq := len(h)
// Check input sizes.
if g == nil {
if nIneq != 0 {
panic(badShape)
}
} else {
gr, gc := g.Dims()
if gr != nIneq {
panic(badShape)
}
if gc != nVar {
panic(badShape)
}
}
nEq := len(b)
if a == nil {
if nEq != 0 {
panic(badShape)
}
} else {
ar, ac := a.Dims()
if ar != nEq {
panic(badShape)
}
if ac != nVar {
panic(badShape)
}
}
// Convert the general form LP.
// Derivation:
// 0. Start with general form
// min. cᵀ * x
// s.t. G * x <= h
// A * x = b
// 1. Introduce slack variables for each constraint
// min. cᵀ * x
// s.t. G * x + s = h
// A * x = b
// s >= 0
// 2. Add non-negativity constraints for x by splitting x
// into positive and negative components.
// x = xp - xn
// xp >= 0, xn >= 0
// This makes the LP
// min. cᵀ * xp - cᵀ xn
// s.t. G * xp - G * xn + s = h
// A * xp - A * xn = b
// xp >= 0, xn >= 0, s >= 0
// 3. Write the above in standard form:
// xt = [xp
// xn
// s ]
// min. [cᵀ, -cᵀ, 0] xt
// s.t. [G, -G, I] xt = h
// [A, -A, 0] xt = b
// x >= 0
// In summary:
// Original LP:
// min. cᵀ * x
// s.t. G * x <= h
// A * x = b
// Standard Form:
// xt = [xp; xn; s]
// min. [cᵀ, -cᵀ, 0] xt
// s.t. [G, -G, I] xt = h
// [A, -A, 0] xt = b
// x >= 0
// New size of x is [xp, xn, s]
nNewVar := nVar + nVar + nIneq
// Construct cNew = [c; -c; 0]
cNew = make([]float64, nNewVar)
copy(cNew, c)
copy(cNew[nVar:], c)
floats.Scale(-1, cNew[nVar:2*nVar])
// New number of equality constraints is the number of total constraints.
nNewEq := nIneq + nEq
// Construct bNew = [h, b].
bNew = make([]float64, nNewEq)
copy(bNew, h)
copy(bNew[nIneq:], b)
// Construct aNew = [G, -G, I; A, -A, 0].
aNew = mat.NewDense(nNewEq, nNewVar, nil)
if nIneq != 0 {
aNew.Slice(0, nIneq, 0, nVar).(*mat.Dense).Copy(g)
aNew.Slice(0, nIneq, nVar, 2*nVar).(*mat.Dense).Scale(-1, g)
aView := aNew.Slice(0, nIneq, 2*nVar, 2*nVar+nIneq).(*mat.Dense)
for i := 0; i < nIneq; i++ {
aView.Set(i, i, 1)
}
}
if nEq != 0 {
aNew.Slice(nIneq, nIneq+nEq, 0, nVar).(*mat.Dense).Copy(a)
aNew.Slice(nIneq, nIneq+nEq, nVar, 2*nVar).(*mat.Dense).Scale(-1, a)
}
return cNew, aNew, bNew
}
|