1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lp implements routines for solving linear programs.
package lp
import (
"errors"
"fmt"
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// TODO(btracey): Could have a solver structure with an abstract factorizer. With
// this transformation the same high-level code could handle both Dense and Sparse.
// TODO(btracey): Need to improve error handling. Only want to panic if condition number inf.
// TODO(btracey): Performance enhancements. There are currently lots of linear
// solves that can be improved by doing rank-one updates. For example, the swap
// step is just a rank-one update.
// TODO(btracey): Better handling on the linear solve errors. If the condition
// number is not inf and the equation solved "well", should keep moving.
var (
ErrBland = errors.New("lp: bland: all replacements are negative or cause ill-conditioned ab")
ErrInfeasible = errors.New("lp: problem is infeasible")
ErrLinSolve = errors.New("lp: linear solve failure")
ErrUnbounded = errors.New("lp: problem is unbounded")
ErrSingular = errors.New("lp: A is singular")
ErrZeroColumn = errors.New("lp: A has a column of all zeros")
ErrZeroRow = errors.New("lp: A has a row of all zeros")
)
const badShape = "lp: size mismatch"
// TODO(btracey): Should these tolerances be part of a settings struct?
const (
// initPosTol is the tolerance on the initial condition being feasible. Strictly,
// the x should be positive, but instead it must be greater than -initPosTol.
initPosTol = 1e-13
// blandNegTol is the tolerance on the value being greater than 0 in the bland test.
blandNegTol = 1e-14
// rRoundTol is the tolerance for rounding values to zero when testing if
// constraints are met.
rRoundTol = 1e-13
// dRoundTol is the tolerance for testing if values are zero for the problem
// being unbounded.
dRoundTol = 1e-13
// phaseIZeroTol tests if the Phase I problem returned a feasible solution.
phaseIZeroTol = 1e-12
// blandZeroTol is the tolerance on testing if the bland solution can move.
blandZeroTol = 1e-12
)
// Simplex solves a linear program in standard form using Danzig's Simplex
// algorithm. The standard form of a linear program is:
//
// minimize cᵀ x
// s.t. A*x = b
// x >= 0 .
//
// The input tol sets how close to the optimal solution is found (specifically,
// when the maximal reduced cost is below tol). An error will be returned if the
// problem is infeasible or unbounded. In rare cases, numeric errors can cause
// the Simplex to fail. In this case, an error will be returned along with the
// most recently found feasible solution.
//
// The Convert function can be used to transform a general LP into standard form.
//
// The input matrix A must have at least as many columns as rows, len(c) must
// equal the number of columns of A, and len(b) must equal the number of rows of
// A or Simplex will panic. A must also have full row rank and may not contain any
// columns with all zeros, or Simplex will return an error.
//
// initialBasic can be used to set the initial set of indices for a feasible
// solution to the LP. If an initial feasible solution is not known, initialBasic
// may be nil. If initialBasic is non-nil, len(initialBasic) must equal the number
// of rows of A and must be an actual feasible solution to the LP, otherwise
// Simplex will panic.
//
// A description of the Simplex algorithm can be found in Ch. 8 of
//
// Strang, Gilbert. "Linear Algebra and Applications." Academic, New York (1976).
//
// For a detailed video introduction, see lectures 11-13 of UC Math 352
//
// https://www.youtube.com/watch?v=ESzYPFkY3og&index=11&list=PLh464gFUoJWOmBYla3zbZbc4nv2AXez6X.
func Simplex(c []float64, A mat.Matrix, b []float64, tol float64, initialBasic []int) (optF float64, optX []float64, err error) {
ans, x, _, err := simplex(initialBasic, c, A, b, tol)
return ans, x, err
}
func simplex(initialBasic []int, c []float64, A mat.Matrix, b []float64, tol float64) (float64, []float64, []int, error) {
err := verifyInputs(initialBasic, c, A, b)
if err != nil {
if err == ErrUnbounded {
return math.Inf(-1), nil, nil, ErrUnbounded
}
return math.NaN(), nil, nil, err
}
m, n := A.Dims()
if m == n {
// Problem is exactly constrained, perform a linear solve.
bVec := mat.NewVecDense(len(b), b)
x := make([]float64, n)
xVec := mat.NewVecDense(n, x)
err := xVec.SolveVec(A, bVec)
if err != nil {
return math.NaN(), nil, nil, ErrSingular
}
for _, v := range x {
if v < 0 {
return math.NaN(), nil, nil, ErrInfeasible
}
}
f := floats.Dot(x, c)
return f, x, nil, nil
}
// There is at least one optimal solution to the LP which is at the intersection
// to a set of constraint boundaries. For a standard form LP with m variables
// and n equality constraints, at least m-n elements of x must equal zero
// at optimality. The Simplex algorithm solves the standard-form LP by starting
// at an initial constraint vertex and successively moving to adjacent constraint
// vertices. At every vertex, the set of non-zero x values is the "basic
// feasible solution". The list of non-zero x's are maintained in basicIdxs,
// the respective columns of A are in ab, and the actual non-zero values of
// x are in xb.
//
// The LP is equality constrained such that A * x = b. This can be expanded
// to
// ab * xb + an * xn = b
// where ab are the columns of a in the basic set, and an are all of the
// other columns. Since each element of xn is zero by definition, this means
// that for all feasible solutions xb = ab^-1 * b.
//
// Before the simplex algorithm can start, an initial feasible solution must
// be found. If initialBasic is non-nil a feasible solution has been supplied.
// Otherwise the "Phase I" problem must be solved to find an initial feasible
// solution.
var basicIdxs []int // The indices of the non-zero x values.
var ab *mat.Dense // The subset of columns of A listed in basicIdxs.
var xb []float64 // The non-zero elements of x. xb = ab^-1 b
if initialBasic != nil {
// InitialBasic supplied. Panic if incorrect length or infeasible.
if len(initialBasic) != m {
panic("lp: incorrect number of initial vectors")
}
ab = mat.NewDense(m, len(initialBasic), nil)
extractColumns(ab, A, initialBasic)
xb = make([]float64, m)
err = initializeFromBasic(xb, ab, b)
if err != nil {
panic(err)
}
basicIdxs = make([]int, len(initialBasic))
copy(basicIdxs, initialBasic)
} else {
// No initial basis supplied. Solve the PhaseI problem.
basicIdxs, ab, xb, err = findInitialBasic(A, b)
if err != nil {
return math.NaN(), nil, nil, err
}
}
// basicIdxs contains the indexes for an initial feasible solution,
// ab contains the extracted columns of A, and xb contains the feasible
// solution. All x not in the basic set are 0 by construction.
// nonBasicIdx is the set of nonbasic variables.
nonBasicIdx := make([]int, 0, n-m)
inBasic := make(map[int]struct{})
for _, v := range basicIdxs {
inBasic[v] = struct{}{}
}
for i := 0; i < n; i++ {
_, ok := inBasic[i]
if !ok {
nonBasicIdx = append(nonBasicIdx, i)
}
}
// cb is the subset of c for the basic variables. an and cn
// are the equivalents to ab and cb but for the nonbasic variables.
cb := make([]float64, len(basicIdxs))
for i, idx := range basicIdxs {
cb[i] = c[idx]
}
cn := make([]float64, len(nonBasicIdx))
for i, idx := range nonBasicIdx {
cn[i] = c[idx]
}
an := mat.NewDense(m, len(nonBasicIdx), nil)
extractColumns(an, A, nonBasicIdx)
bVec := mat.NewVecDense(len(b), b)
cbVec := mat.NewVecDense(len(cb), cb)
// Temporary data needed each iteration. (Described later)
r := make([]float64, n-m)
move := make([]float64, m)
// Solve the linear program starting from the initial feasible set. This is
// the "Phase 2" problem.
//
// Algorithm:
// 1) Compute the "reduced costs" for the non-basic variables. The reduced
// costs are the lagrange multipliers of the constraints.
// r = cn - anᵀ * ab¯ᵀ * cb
// 2) If all of the reduced costs are positive, no improvement is possible,
// and the solution is optimal (xn can only increase because of
// non-negativity constraints). Otherwise, the solution can be improved and
// one element will be exchanged in the basic set.
// 3) Choose the x_n with the most negative value of r. Call this value xe.
// This variable will be swapped into the basic set.
// 4) Increase xe until the next constraint boundary is met. This will happen
// when the first element in xb becomes 0. The distance xe can increase before
// a given element in xb becomes negative can be found from
// xb = Ab^-1 b - Ab^-1 An xn
// = Ab^-1 b - Ab^-1 Ae xe
// = bhat + d x_e
// xe = bhat_i / - d_i
// where Ae is the column of A corresponding to xe.
// The constraining basic index is the first index for which this is true,
// so remove the element which is min_i (bhat_i / -d_i), assuming d_i is negative.
// If no d_i is less than 0, then the problem is unbounded.
// 5) If the new xe is 0 (that is, bhat_i == 0), then this location is at
// the intersection of several constraints. Use the Bland rule instead
// of the rule in step 4 to avoid cycling.
for {
// Compute reduced costs -- r = cn - anᵀ ab¯ᵀ cb
var tmp mat.VecDense
err = tmp.SolveVec(ab.T(), cbVec)
if err != nil {
break
}
data := make([]float64, n-m)
tmp2 := mat.NewVecDense(n-m, data)
tmp2.MulVec(an.T(), &tmp)
floats.SubTo(r, cn, data)
// Replace the most negative element in the simplex. If there are no
// negative entries then the optimal solution has been found.
minIdx := floats.MinIdx(r)
if r[minIdx] >= -tol {
break
}
for i, v := range r {
if math.Abs(v) < rRoundTol {
r[i] = 0
}
}
// Compute the moving distance.
err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx)
if err != nil {
if err == ErrUnbounded {
return math.Inf(-1), nil, nil, ErrUnbounded
}
break
}
// Replace the basic index along the tightest constraint.
replace := floats.MinIdx(move)
if move[replace] <= 0 {
replace, minIdx, err = replaceBland(A, ab, xb, basicIdxs, nonBasicIdx, r, move)
if err != nil {
if err == ErrUnbounded {
return math.Inf(-1), nil, nil, ErrUnbounded
}
break
}
}
// Replace the constrained basicIdx with the newIdx.
basicIdxs[replace], nonBasicIdx[minIdx] = nonBasicIdx[minIdx], basicIdxs[replace]
cb[replace], cn[minIdx] = cn[minIdx], cb[replace]
tmpCol1 := mat.Col(nil, replace, ab)
tmpCol2 := mat.Col(nil, minIdx, an)
ab.SetCol(replace, tmpCol2)
an.SetCol(minIdx, tmpCol1)
// Compute the new xb.
xbVec := mat.NewVecDense(len(xb), xb)
err = xbVec.SolveVec(ab, bVec)
if err != nil {
break
}
}
// Found the optimum successfully or died trying. The basic variables get
// their values, and the non-basic variables are all zero.
opt := floats.Dot(cb, xb)
xopt := make([]float64, n)
for i, v := range basicIdxs {
xopt[v] = xb[i]
}
return opt, xopt, basicIdxs, err
}
// computeMove computes how far can be moved replacing each index. The results
// are stored into move.
func computeMove(move []float64, minIdx int, A mat.Matrix, ab *mat.Dense, xb []float64, nonBasicIdx []int) error {
// Find ae.
col := mat.Col(nil, nonBasicIdx[minIdx], A)
aCol := mat.NewVecDense(len(col), col)
// d = - Ab^-1 Ae
nb, _ := ab.Dims()
d := make([]float64, nb)
dVec := mat.NewVecDense(nb, d)
err := dVec.SolveVec(ab, aCol)
if err != nil {
return ErrLinSolve
}
floats.Scale(-1, d)
for i, v := range d {
if math.Abs(v) < dRoundTol {
d[i] = 0
}
}
// If no di < 0, then problem is unbounded.
if floats.Min(d) >= 0 {
return ErrUnbounded
}
// move = bhat_i / - d_i, assuming d is negative.
bHat := xb // ab^-1 b
for i, v := range d {
if v >= 0 {
move[i] = math.Inf(1)
} else {
move[i] = bHat[i] / math.Abs(v)
}
}
return nil
}
// replaceBland uses the Bland rule to find the indices to swap if the minimum
// move is 0. The indices to be swapped are replace and minIdx (following the
// nomenclature in the main routine).
func replaceBland(A mat.Matrix, ab *mat.Dense, xb []float64, basicIdxs, nonBasicIdx []int, r, move []float64) (replace, minIdx int, err error) {
m, _ := A.Dims()
// Use the traditional bland rule, except don't replace a constraint which
// causes the new ab to be singular.
for i, v := range r {
if v > -blandNegTol {
continue
}
minIdx = i
err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx)
if err != nil {
// Either unbounded or something went wrong.
return -1, -1, err
}
replace = floats.MinIdx(move)
if math.Abs(move[replace]) > blandZeroTol {
// Large enough that it shouldn't be a problem
return replace, minIdx, nil
}
// Find a zero index where replacement is non-singular.
biCopy := make([]int, len(basicIdxs))
for replace, v := range move {
if v > blandZeroTol {
continue
}
copy(biCopy, basicIdxs)
biCopy[replace] = nonBasicIdx[minIdx]
abTmp := mat.NewDense(m, len(biCopy), nil)
extractColumns(abTmp, A, biCopy)
// If the condition number is reasonable, use this index.
if mat.Cond(abTmp, 1) < 1e16 {
return replace, minIdx, nil
}
}
}
return -1, -1, ErrBland
}
func verifyInputs(initialBasic []int, c []float64, A mat.Matrix, b []float64) error {
m, n := A.Dims()
if m > n {
panic("lp: more equality constraints than variables")
}
if len(c) != n {
panic("lp: c vector incorrect length")
}
if len(b) != m {
panic("lp: b vector incorrect length")
}
if len(c) != n {
panic("lp: c vector incorrect length")
}
if len(initialBasic) != 0 && len(initialBasic) != m {
panic("lp: initialBasic incorrect length")
}
// Do some sanity checks so that ab does not become singular during the
// simplex solution. If the ZeroRow checks are removed then the code for
// finding a set of linearly independent columns must be improved.
// Check that if a row of A only has zero elements that corresponding
// element in b is zero, otherwise the problem is infeasible.
// Otherwise return ErrZeroRow.
for i := 0; i < m; i++ {
isZero := true
for j := 0; j < n; j++ {
if A.At(i, j) != 0 {
isZero = false
break
}
}
if isZero && b[i] != 0 {
// Infeasible
return ErrInfeasible
} else if isZero {
return ErrZeroRow
}
}
// Check that if a column only has zero elements that the respective C vector
// is positive (otherwise unbounded). Otherwise return ErrZeroColumn.
for j := 0; j < n; j++ {
isZero := true
for i := 0; i < m; i++ {
if A.At(i, j) != 0 {
isZero = false
break
}
}
if isZero && c[j] < 0 {
return ErrUnbounded
} else if isZero {
return ErrZeroColumn
}
}
return nil
}
// initializeFromBasic initializes the basic feasible solution given a set of
// basic indices. It extracts the columns of A specified by basicIdxs and finds
// the x values at that location. These are stored into xb.
//
// If the columns of A are not linearly independent or if the initial set is not
// feasible, an error is returned.
func initializeFromBasic(xb []float64, ab *mat.Dense, b []float64) error {
m, _ := ab.Dims()
if len(xb) != m {
panic("simplex: bad xb length")
}
xbMat := mat.NewVecDense(m, xb)
err := xbMat.SolveVec(ab, mat.NewVecDense(m, b))
if err != nil {
return errors.New("lp: subcolumns of A for supplied initial basic singular")
}
// The solve ensures that the equality constraints are met (ab * xb = b).
// Thus, the solution is feasible if and only if all of the x's are positive.
allPos := true
for _, v := range xb {
if v < -initPosTol {
allPos = false
break
}
}
if !allPos {
return errors.New("lp: supplied subcolumns not a feasible solution")
}
return nil
}
// extractColumns copies the columns specified by cols into the columns of dst.
func extractColumns(dst *mat.Dense, A mat.Matrix, cols []int) {
r, c := dst.Dims()
ra, _ := A.Dims()
if ra != r {
panic("simplex: row mismatch")
}
if c != len(cols) {
panic("simplex: column mismatch")
}
col := make([]float64, r)
for j, idx := range cols {
mat.Col(col, idx, A)
dst.SetCol(j, col)
}
}
// findInitialBasic finds an initial basic solution, and returns the basic
// indices, ab, and xb.
func findInitialBasic(A mat.Matrix, b []float64) ([]int, *mat.Dense, []float64, error) {
m, n := A.Dims()
basicIdxs := findLinearlyIndependent(A)
if len(basicIdxs) != m {
return nil, nil, nil, ErrSingular
}
// It may be that this linearly independent basis is also a feasible set. If
// so, the Phase I problem can be avoided.
ab := mat.NewDense(m, len(basicIdxs), nil)
extractColumns(ab, A, basicIdxs)
xb := make([]float64, m)
err := initializeFromBasic(xb, ab, b)
if err == nil {
return basicIdxs, ab, xb, nil
}
// This set was not feasible. Instead the "Phase I" problem must be solved
// to find an initial feasible set of basis.
//
// Method: Construct an LP whose optimal solution is a feasible solution
// to the original LP.
// 1) Introduce an artificial variable x_{n+1}.
// 2) Let x_j be the most negative element of x_b (largest constraint violation).
// 3) Add the artificial variable to A with:
// a_{n+1} = b - \sum_{i in basicIdxs} a_i + a_j
// swap j with n+1 in the basicIdxs.
// 4) Define a new LP:
// minimize x_{n+1}
// subject to [A A_{n+1}][x_1 ... x_{n+1}] = b
// x, x_{n+1} >= 0
// 5) Solve this LP. If x_{n+1} != 0, then the problem is infeasible, otherwise
// the found basis can be used as an initial basis for phase II.
//
// The extra column in Step 3 is defined such that the vector of 1s is an
// initial feasible solution.
// Find the largest constraint violator.
// Compute a_{n+1} = b - \sum{i in basicIdxs}a_i + a_j. j is in basicIDx, so
// instead just subtract the basicIdx columns that are not minIDx.
minIdx := floats.MinIdx(xb)
aX1 := make([]float64, m)
copy(aX1, b)
col := make([]float64, m)
for i, v := range basicIdxs {
if i == minIdx {
continue
}
mat.Col(col, v, A)
floats.Sub(aX1, col)
}
// Construct the new LP.
// aNew = [A, a_{n+1}]
// bNew = b
// cNew = 1 for x_{n+1}
aNew := mat.NewDense(m, n+1, nil)
aNew.Copy(A)
aNew.SetCol(n, aX1)
basicIdxs[minIdx] = n // swap minIdx with n in the basic set.
c := make([]float64, n+1)
c[n] = 1
// Solve the Phase I linear program.
_, xOpt, newBasic, err := simplex(basicIdxs, c, aNew, b, 1e-10)
if err != nil {
return nil, nil, nil, fmt.Errorf("lp: error finding feasible basis: %s", err)
}
// The original LP is infeasible if the added variable has non-zero value
// in the optimal solution to the Phase I problem.
if math.Abs(xOpt[n]) > phaseIZeroTol {
return nil, nil, nil, ErrInfeasible
}
// The basis found in Phase I is a feasible solution to the original LP if
// the added variable is not in the basis.
addedIdx := -1
for i, v := range newBasic {
if v == n {
addedIdx = i
}
xb[i] = xOpt[v]
}
if addedIdx == -1 {
extractColumns(ab, A, newBasic)
return newBasic, ab, xb, nil
}
// The value of the added variable is in the basis, but it has a zero value.
// See if exchanging another variable into the basic set finds a feasible
// solution.
basicMap := make(map[int]struct{})
for _, v := range newBasic {
basicMap[v] = struct{}{}
}
var set bool
for i := range xOpt {
if _, inBasic := basicMap[i]; inBasic {
continue
}
newBasic[addedIdx] = i
if set {
mat.Col(col, i, A)
ab.SetCol(addedIdx, col)
} else {
extractColumns(ab, A, newBasic)
set = true
}
err := initializeFromBasic(xb, ab, b)
if err == nil {
return newBasic, ab, xb, nil
}
}
return nil, nil, nil, ErrInfeasible
}
// findLinearlyIndependent finds a set of linearly independent columns of A, and
// returns the column indexes of the linearly independent columns.
func findLinearlyIndependent(A mat.Matrix) []int {
m, n := A.Dims()
idxs := make([]int, 0, m)
columns := mat.NewDense(m, m, nil)
newCol := make([]float64, m)
// Walk in reverse order because slack variables are typically the last columns
// of A.
for i := n - 1; i >= 0; i-- {
if len(idxs) == m {
break
}
mat.Col(newCol, i, A)
columns.SetCol(len(idxs), newCol)
if len(idxs) == 0 {
// A column is linearly independent from the null set.
// If all-zero column of A are allowed, this code needs to be adjusted.
idxs = append(idxs, i)
continue
}
if mat.Cond(columns.Slice(0, m, 0, len(idxs)+1), 1) > 1e12 {
// Not linearly independent.
continue
}
idxs = append(idxs, i)
}
return idxs
}
|