1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package functions
import "math"
// This file implements functions from the Virtual Library of Simulation Experiments.
// https://www.sfu.ca/~ssurjano/optimization.html
// In many cases gradients and Hessians have been added. In some cases, these
// are not defined at certain points or manifolds. The gradient in these locations
// has been set to 0.
// Ackley implements the Ackley function, a function of arbitrary dimension that
// has many local minima. It has a single global minimum of 0 at 0. Its typical
// domain is the hypercube of [-32.768, 32.768]^d.
//
// f(x) = -20 * exp(-0.2 sqrt(1/d sum_i x_i^2)) - exp(1/d sum_i cos(2π x_i)) + 20 + exp(1)
//
// where d is the input dimension.
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/ackley.html (obtained June 2017)
type Ackley struct{}
func (Ackley) Func(x []float64) float64 {
var ss, sc float64
for _, v := range x {
ss += v * v
sc += math.Cos(2 * math.Pi * v)
}
id := 1 / float64(len(x))
return -20*math.Exp(-0.2*math.Sqrt(id*ss)) - math.Exp(id*sc) + 20 + math.E
}
// Bukin6 implements Bukin's 6th function. The function is two-dimensional, with
// the typical domain as x_0 ∈ [-15, -5], x_1 ∈ [-3, 3]. The function has a unique
// global minimum at [-10, 1], and many local minima.
//
// f(x) = 100 * sqrt(|x_1 - 0.01*x_0^2|) + 0.01*|x_0+10|
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/bukin6.html (obtained June 2017)
type Bukin6 struct{}
func (Bukin6) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
return 100*math.Sqrt(math.Abs(x[1]-0.01*x[0]*x[0])) + 0.01*math.Abs(x[0]+10)
}
// CamelThree implements the three-hump camel function, a two-dimensional function
// with three local minima, one of which is global.
// The function is given by
//
// f(x) = 2*x_0^2 - 1.05*x_0^4 + x_0^6/6 + x_0*x_1 + x_1^2
//
// with the global minimum at
//
// x^* = (0, 0)
// f(x^*) = 0
//
// The typical domain is x_i ∈ [-5, 5] for all i.
// Reference:
//
// https://www.sfu.ca/~ssurjano/camel3.html (obtained December 2017)
type CamelThree struct{}
func (c CamelThree) Func(x []float64) float64 {
if len(x) != 2 {
panic("camelthree: dimension must be 2")
}
x0 := x[0]
x1 := x[1]
x02 := x0 * x0
x04 := x02 * x02
return 2*x02 - 1.05*x04 + x04*x02/6 + x0*x1 + x1*x1
}
// CamelSix implements the six-hump camel function, a two-dimensional function.
// with six local minima, two of which are global.
// The function is given by
//
// f(x) = (4 - 2.1*x_0^2 + x_0^4/3)*x_0^2 + x_0*x_1 + (-4 + 4*x_1^2)*x_1^2
//
// with the global minima at
//
// x^* = (0.0898, -0.7126), (-0.0898, 0.7126)
// f(x^*) = -1.0316
//
// The typical domain is x_0 ∈ [-3, 3], x_1 ∈ [-2, 2].
// Reference:
//
// https://www.sfu.ca/~ssurjano/camel6.html (obtained December 2017)
type CamelSix struct{}
func (c CamelSix) Func(x []float64) float64 {
if len(x) != 2 {
panic("camelsix: dimension must be 2")
}
x0 := x[0]
x1 := x[1]
x02 := x0 * x0
x12 := x1 * x1
return (4-2.1*x02+x02*x02/3)*x02 + x0*x1 + (-4+4*x12)*x12
}
// CrossInTray implements the cross-in-tray function. The cross-in-tray function
// is a two-dimensional function with many local minima, and four global minima
// at (±1.3491, ±1.3491). The function is typically evaluated in the square
// [-10,10]^2.
//
// f(x) = -0.001(|sin(x_0)sin(x_1)exp(|100-sqrt((x_0^2+x_1^2)/π)|)|+1)^0.1
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/crossit.html (obtained June 2017)
type CrossInTray struct{}
func (CrossInTray) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
x0 := x[0]
x1 := x[1]
exp := math.Abs(100 - math.Sqrt((x0*x0+x1*x1)/math.Pi))
return -0.0001 * math.Pow(math.Abs(math.Sin(x0)*math.Sin(x1)*math.Exp(exp))+1, 0.1)
}
// DixonPrice implements the DixonPrice function, a function of arbitrary dimension
// Its typical domain is the hypercube of [-10, 10]^d.
// The function is given by
//
// f(x) = (x_0-1)^2 + \sum_{i=1}^{d-1} (i+1) * (2*x_i^2-x_{i-1})^2
//
// where d is the input dimension. There is a single global minimum, which has
// a location and value of
//
// x_i^* = 2^{-(2^{i+1}-2)/(2^{i+1})} for i = 0, ..., d-1.
// f(x^*) = 0
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/dixonpr.html (obtained June 2017)
type DixonPrice struct{}
func (DixonPrice) Func(x []float64) float64 {
xp := x[0]
v := (xp - 1) * (xp - 1)
for i := 1; i < len(x); i++ {
xn := x[i]
tmp := (2*xn*xn - xp)
v += float64(i+1) * tmp * tmp
xp = xn
}
return v
}
// DropWave implements the drop-wave function, a two-dimensional function with
// many local minima and one global minimum at 0. The function is typically evaluated
// in the square [-5.12, 5.12]^2.
//
// f(x) = - (1+cos(12*sqrt(x0^2+x1^2))) / (0.5*(x0^2+x1^2)+2)
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/drop.html (obtained June 2017)
type DropWave struct{}
func (DropWave) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
x0 := x[0]
x1 := x[1]
num := 1 + math.Cos(12*math.Sqrt(x0*x0+x1*x1))
den := 0.5*(x0*x0+x1*x1) + 2
return -num / den
}
// Eggholder implements the Eggholder function, a two-dimensional function with
// many local minima and one global minimum at [512, 404.2319]. The function
// is typically evaluated in the square [-512, 512]^2.
//
// f(x) = -(x_1+47)*sin(sqrt(|x_1+x_0/2+47|))-x_1*sin(sqrt(|x_0-(x_1+47)|))
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/egg.html (obtained June 2017)
type Eggholder struct{}
func (Eggholder) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
x0 := x[0]
x1 := x[1]
return -(x1+47)*math.Sin(math.Sqrt(math.Abs(x1+x0/2+47))) -
x0*math.Sin(math.Sqrt(math.Abs(x0-x1-47)))
}
// GramacyLee implements the Gramacy-Lee function, a one-dimensional function
// with many local minima. The function is typically evaluated on the domain [0.5, 2.5].
//
// f(x) = sin(10πx)/(2x) + (x-1)^4
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/grlee12.html (obtained June 2017)
type GramacyLee struct{}
func (GramacyLee) Func(x []float64) float64 {
if len(x) != 1 {
panic(badInputDim)
}
x0 := x[0]
return math.Sin(10*math.Pi*x0)/(2*x0) + math.Pow(x0-1, 4)
}
// Griewank implements the Griewank function, a function of arbitrary dimension that
// has many local minima. It has a single global minimum of 0 at 0. Its typical
// domain is the hypercube of [-600, 600]^d.
//
// f(x) = \sum_i x_i^2/4000 - \prod_i cos(x_i/sqrt(i)) + 1
//
// where d is the input dimension.
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/griewank.html (obtained June 2017)
type Griewank struct{}
func (Griewank) Func(x []float64) float64 {
var ss float64
pc := 1.0
for i, v := range x {
ss += v * v
pc *= math.Cos(v / math.Sqrt(float64(i+1)))
}
return ss/4000 - pc + 1
}
// HolderTable implements the Holder table function. The Holder table function
// is a two-dimensional function with many local minima, and four global minima
// at (±8.05502, ±9.66459). The function is typically evaluated in the square [-10,10]^2.
//
// f(x) = -|sin(x_0)cos(x1)exp(|1-sqrt(x_0^2+x1^2)/π|)|
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/holder.html (obtained June 2017)
type HolderTable struct{}
func (HolderTable) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
x0 := x[0]
x1 := x[1]
return -math.Abs(math.Sin(x0) * math.Cos(x1) * math.Exp(math.Abs(1-math.Sqrt(x0*x0+x1*x1)/math.Pi)))
}
// Langermann2 implements the two-dimensional version of the Langermann function.
// The Langermann function has many local minima. The function is typically
// evaluated in the square [0,10]^2.
//
// f(x) = \sum_1^5 c_i exp(-(1/π)\sum_{j=1}^2(x_j-A_{ij})^2) * cos(π\sum_{j=1}^2 (x_j - A_{ij})^2)
// c = [5]float64{1,2,5,2,3}
// A = [5][2]float64{{3,5},{5,2},{2,1},{1,4},{7,9}}
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/langer.html (obtained June 2017)
type Langermann2 struct{}
func (Langermann2) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
var (
c = [5]float64{1, 2, 5, 2, 3}
A = [5][2]float64{{3, 5}, {5, 2}, {2, 1}, {1, 4}, {7, 9}}
)
var f float64
for i, cv := range c {
var ss float64
for j, av := range A[i] {
xja := x[j] - av
ss += xja * xja
}
f += cv * math.Exp(-(1/math.Pi)*ss) * math.Cos(math.Pi*ss)
}
return f
}
// Levy implements the Levy function, a function of arbitrary dimension that
// has many local minima. It has a single global minimum of 0 at 1. Its typical
// domain is the hypercube of [-10, 10]^d.
//
// f(x) = sin^2(π*w_0) + \sum_{i=0}^{d-2}(w_i-1)^2*[1+10sin^2(π*w_i+1)] +
// (w_{d-1}-1)^2*[1+sin^2(2π*w_{d-1})]
// w_i = 1 + (x_i-1)/4
//
// where d is the input dimension.
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/levy.html (obtained June 2017)
type Levy struct{}
func (Levy) Func(x []float64) float64 {
w1 := 1 + (x[0]-1)/4
s1 := math.Sin(math.Pi * w1)
sum := s1 * s1
for i := 0; i < len(x)-1; i++ {
wi := 1 + (x[i]-1)/4
s := math.Sin(math.Pi*wi + 1)
sum += (wi - 1) * (wi - 1) * (1 + 10*s*s)
}
wd := 1 + (x[len(x)-1]-1)/4
sd := math.Sin(2 * math.Pi * wd)
return sum + (wd-1)*(wd-1)*(1+sd*sd)
}
// Levy13 implements the Levy-13 function, a two-dimensional function
// with many local minima. It has a single global minimum of 0 at 1. Its typical
// domain is the square [-10, 10]^2.
//
// f(x) = sin^2(3π*x_0) + (x_0-1)^2*[1+sin^2(3π*x_1)] + (x_1-1)^2*[1+sin^2(2π*x_1)]
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/levy13.html (obtained June 2017)
type Levy13 struct{}
func (Levy13) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
x0 := x[0]
x1 := x[1]
s0 := math.Sin(3 * math.Pi * x0)
s1 := math.Sin(3 * math.Pi * x1)
s2 := math.Sin(2 * math.Pi * x1)
return s0*s0 + (x0-1)*(x0-1)*(1+s1*s1) + (x1-1)*(x1-1)*(1+s2*s2)
}
// Rastrigin implements the Rastrigen function, a function of arbitrary dimension
// that has many local minima. It has a single global minimum of 0 at 0. Its typical
// domain is the hypercube of [-5.12, 5.12]^d.
//
// f(x) = 10d + \sum_i [x_i^2 - 10cos(2π*x_i)]
//
// where d is the input dimension.
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/rastr.html (obtained June 2017)
type Rastrigin struct{}
func (Rastrigin) Func(x []float64) float64 {
sum := 10 * float64(len(x))
for _, v := range x {
sum += v*v - 10*math.Cos(2*math.Pi*v)
}
return sum
}
// Schaffer2 implements the second Schaffer function, a two-dimensional function
// with many local minima. It has a single global minimum of 0 at 0. Its typical
// domain is the square [-100, 100]^2.
//
// f(x) = 0.5 + (sin^2(x_0^2-x_1^2)-0.5) / (1+0.001*(x_0^2+x_1^2))^2
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/schaffer2.html (obtained June 2017)
type Schaffer2 struct{}
func (Schaffer2) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
x0 := x[0]
x1 := x[1]
s := math.Sin(x0*x0 - x1*x1)
den := 1 + 0.001*(x0*x0+x1*x1)
return 0.5 + (s*s-0.5)/(den*den)
}
// Schaffer4 implements the fourth Schaffer function, a two-dimensional function
// with many local minima. Its typical domain is the square [-100, 100]^2.
//
// f(x) = 0.5 + (cos(sin(|x_0^2-x_1^2|))-0.5) / (1+0.001*(x_0^2+x_1^2))^2
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/schaffer4.html (obtained June 2017)
type Schaffer4 struct{}
func (Schaffer4) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
x0 := x[0]
x1 := x[1]
den := 1 + 0.001*(x0*x0+x1*x1)
return 0.5 + (math.Cos(math.Sin(math.Abs(x0*x0-x1*x1)))-0.5)/(den*den)
}
// Schwefel implements the Schwefel function, a function of arbitrary dimension
// that has many local minima. Its typical domain is the hypercube of [-500, 500]^d.
//
// f(x) = 418.9829*d - \sum_i x_i*sin(sqrt(|x_i|))
//
// where d is the input dimension.
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/schwef.html (obtained June 2017)
type Schwefel struct{}
func (Schwefel) Func(x []float64) float64 {
var sum float64
for _, v := range x {
sum += v * math.Sin(math.Sqrt(math.Abs(v)))
}
return 418.9829*float64(len(x)) - sum
}
// Shubert implements the Shubert function, a two-dimensional function
// with many local minima and many global minima. Its typical domain is the
// square [-10, 10]^2.
//
// f(x) = (sum_{i=1}^5 i cos((i+1)*x_0+i)) * (\sum_{i=1}^5 i cos((i+1)*x_1+i))
//
// Reference:
//
// https://www.sfu.ca/~ssurjano/shubert.html (obtained June 2017)
type Shubert struct{}
func (Shubert) Func(x []float64) float64 {
if len(x) != 2 {
panic(badInputDim)
}
x0 := x[0]
x1 := x[1]
var s0, s1 float64
for i := 1.0; i <= 5.0; i++ {
s0 += i * math.Cos((i+1)*x0+i)
s1 += i * math.Cos((i+1)*x1+i)
}
return s0 * s1
}
|