1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import (
"gonum.org/v1/gonum/floats"
)
var (
_ Method = (*LBFGS)(nil)
_ localMethod = (*LBFGS)(nil)
_ NextDirectioner = (*LBFGS)(nil)
)
// LBFGS implements the limited-memory BFGS method for gradient-based
// unconstrained minimization.
//
// It stores a modified version of the inverse Hessian approximation H
// implicitly from the last Store iterations while the normal BFGS method
// stores and manipulates H directly as a dense matrix. Therefore LBFGS is more
// appropriate than BFGS for large problems as the cost of LBFGS scales as
// O(Store * dim) while BFGS scales as O(dim^2). The "forgetful" nature of
// LBFGS may also make it perform better than BFGS for functions with Hessians
// that vary rapidly spatially.
type LBFGS struct {
// Linesearcher selects suitable steps along the descent direction.
// Accepted steps should satisfy the strong Wolfe conditions.
// If Linesearcher is nil, a reasonable default will be chosen.
Linesearcher Linesearcher
// Store is the size of the limited-memory storage.
// If Store is 0, it will be defaulted to 15.
Store int
// GradStopThreshold sets the threshold for stopping if the gradient norm
// gets too small. If GradStopThreshold is 0 it is defaulted to 1e-12, and
// if it is NaN the setting is not used.
GradStopThreshold float64
status Status
err error
ls *LinesearchMethod
dim int // Dimension of the problem
x []float64 // Location at the last major iteration
grad []float64 // Gradient at the last major iteration
// History
oldest int // Index of the oldest element of the history
y [][]float64 // Last Store values of y
s [][]float64 // Last Store values of s
rho []float64 // Last Store values of rho
a []float64 // Cache of Hessian updates
}
func (l *LBFGS) Status() (Status, error) {
return l.status, l.err
}
func (*LBFGS) Uses(has Available) (uses Available, err error) {
return has.gradient()
}
func (l *LBFGS) Init(dim, tasks int) int {
l.status = NotTerminated
l.err = nil
return 1
}
func (l *LBFGS) Run(operation chan<- Task, result <-chan Task, tasks []Task) {
l.status, l.err = localOptimizer{}.run(l, l.GradStopThreshold, operation, result, tasks)
close(operation)
}
func (l *LBFGS) initLocal(loc *Location) (Operation, error) {
if l.Linesearcher == nil {
l.Linesearcher = &Bisection{}
}
if l.Store == 0 {
l.Store = 15
}
if l.ls == nil {
l.ls = &LinesearchMethod{}
}
l.ls.Linesearcher = l.Linesearcher
l.ls.NextDirectioner = l
return l.ls.Init(loc)
}
func (l *LBFGS) iterateLocal(loc *Location) (Operation, error) {
return l.ls.Iterate(loc)
}
func (l *LBFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) {
dim := len(loc.X)
l.dim = dim
l.oldest = 0
l.a = resize(l.a, l.Store)
l.rho = resize(l.rho, l.Store)
l.y = l.initHistory(l.y)
l.s = l.initHistory(l.s)
l.x = resize(l.x, dim)
copy(l.x, loc.X)
l.grad = resize(l.grad, dim)
copy(l.grad, loc.Gradient)
copy(dir, loc.Gradient)
floats.Scale(-1, dir)
return 1 / floats.Norm(dir, 2)
}
func (l *LBFGS) initHistory(hist [][]float64) [][]float64 {
c := cap(hist)
if c < l.Store {
n := make([][]float64, l.Store-c)
hist = append(hist[:c], n...)
}
hist = hist[:l.Store]
for i := range hist {
hist[i] = resize(hist[i], l.dim)
for j := range hist[i] {
hist[i][j] = 0
}
}
return hist
}
func (l *LBFGS) NextDirection(loc *Location, dir []float64) (stepSize float64) {
// Uses two-loop correction as described in
// Nocedal, J., Wright, S.: Numerical Optimization (2nd ed). Springer (2006), chapter 7, page 178.
if len(loc.X) != l.dim {
panic("lbfgs: unexpected size mismatch")
}
if len(loc.Gradient) != l.dim {
panic("lbfgs: unexpected size mismatch")
}
if len(dir) != l.dim {
panic("lbfgs: unexpected size mismatch")
}
y := l.y[l.oldest]
floats.SubTo(y, loc.Gradient, l.grad)
s := l.s[l.oldest]
floats.SubTo(s, loc.X, l.x)
sDotY := floats.Dot(s, y)
l.rho[l.oldest] = 1 / sDotY
l.oldest = (l.oldest + 1) % l.Store
copy(l.x, loc.X)
copy(l.grad, loc.Gradient)
copy(dir, loc.Gradient)
// Start with the most recent element and go backward,
for i := 0; i < l.Store; i++ {
idx := l.oldest - i - 1
if idx < 0 {
idx += l.Store
}
l.a[idx] = l.rho[idx] * floats.Dot(l.s[idx], dir)
floats.AddScaled(dir, -l.a[idx], l.y[idx])
}
// Scale the initial Hessian.
gamma := sDotY / floats.Dot(y, y)
floats.Scale(gamma, dir)
// Start with the oldest element and go forward.
for i := 0; i < l.Store; i++ {
idx := i + l.oldest
if idx >= l.Store {
idx -= l.Store
}
beta := l.rho[idx] * floats.Dot(l.y[idx], dir)
floats.AddScaled(dir, l.a[idx]-beta, l.s[idx])
}
// dir contains H^{-1} * g, so flip the direction for minimization.
floats.Scale(-1, dir)
return 1
}
func (*LBFGS) needs() struct {
Gradient bool
Hessian bool
} {
return struct {
Gradient bool
Hessian bool
}{true, false}
}
|