1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import (
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/optimize/functions"
)
func TestListSearch(t *testing.T) {
t.Parallel()
rnd := rand.New(rand.NewSource(1))
for cas, test := range []struct {
r, c int
shortEvals int
fun func([]float64) float64
}{
{
r: 100,
c: 10,
fun: functions.ExtendedRosenbrock{}.Func,
},
} {
// Generate a random list of items.
r, c := test.r, test.c
locs := mat.NewDense(r, c, nil)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
locs.Set(i, j, rnd.NormFloat64())
}
}
// Evaluate all of the items in the list and find the minimum value.
fs := make([]float64, r)
for i := 0; i < r; i++ {
fs[i] = test.fun(locs.RawRowView(i))
}
minIdx := floats.MinIdx(fs)
// Check that the global minimum is found under normal conditions.
p := Problem{Func: test.fun}
method := &ListSearch{
Locs: locs,
}
settings := &Settings{
Converger: NeverTerminate{},
}
initX := make([]float64, c)
result, err := Minimize(p, initX, settings, method)
if err != nil {
t.Errorf("cas %v: error optimizing: %s", cas, err)
}
if result.Status != MethodConverge {
t.Errorf("cas %v: status should be MethodConverge", cas)
}
if !floats.Equal(result.X, locs.RawRowView(minIdx)) {
t.Errorf("cas %v: did not find minimum of whole list", cas)
}
// Check that the optimization works concurrently.
concurrent := 6
settings.Concurrent = concurrent
result, err = Minimize(p, initX, settings, method)
if err != nil {
t.Errorf("cas %v: error optimizing: %s", cas, err)
}
if result.Status != MethodConverge {
t.Errorf("cas %v: status should be MethodConverge", cas)
}
if !floats.Equal(result.X, locs.RawRowView(minIdx)) {
t.Errorf("cas %v: did not find minimum of whole list concurrent", cas)
}
// Check that the optimization works concurrently with more than the number of samples.
settings.Concurrent = test.r + concurrent
result, err = Minimize(p, initX, settings, method)
if err != nil {
t.Errorf("cas %v: error optimizing: %s", cas, err)
}
if result.Status != MethodConverge {
t.Errorf("cas %v: status should be MethodConverge", cas)
}
if !floats.Equal(result.X, locs.RawRowView(minIdx)) {
t.Errorf("cas %v: did not find minimum of whole list concurrent", cas)
}
// Check that cleanup happens properly by setting the minimum location
// to the last sample.
swapSamples(locs, fs, minIdx, test.r-1)
minIdx = test.r - 1
settings.Concurrent = concurrent
result, err = Minimize(p, initX, settings, method)
if err != nil {
t.Errorf("cas %v: error optimizing: %s", cas, err)
}
if result.Status != MethodConverge {
t.Errorf("cas %v: status should be MethodConverge", cas)
}
if !floats.Equal(result.X, locs.RawRowView(minIdx)) {
t.Errorf("cas %v: did not find minimum of whole list last sample", cas)
}
// Test that the correct optimum is found when the optimization ends early.
// Note that the above test swapped the list minimum to the last sample,
// so it's guaranteed that the minimum of the shortened list is not the
// same as the minimum of the whole list.
evals := test.r / 3
minIdxFirst := floats.MinIdx(fs[:evals])
settings.Concurrent = 0
settings.FuncEvaluations = evals
result, err = Minimize(p, initX, settings, method)
if err != nil {
t.Errorf("cas %v: error optimizing: %s", cas, err)
}
if result.Status != FunctionEvaluationLimit {
t.Errorf("cas %v: status was not FunctionEvaluationLimit", cas)
}
if !floats.Equal(result.X, locs.RawRowView(minIdxFirst)) {
t.Errorf("cas %v: did not find minimum of shortened list serial", cas)
}
// Test the same but concurrently. We can't guarantee a specific number
// of function evaluations concurrently, so make sure that the list optimum
// is not between [evals:evals+concurrent]
for floats.MinIdx(fs[:evals]) != floats.MinIdx(fs[:evals+concurrent]) {
// Swap the minimum index with a random element.
minIdxFirst := floats.MinIdx(fs[:evals+concurrent])
new := rnd.Intn(evals)
swapSamples(locs, fs, minIdxFirst, new)
}
minIdxFirst = floats.MinIdx(fs[:evals])
settings.Concurrent = concurrent
result, err = Minimize(p, initX, settings, method)
if err != nil {
t.Errorf("cas %v: error optimizing: %s", cas, err)
}
if result.Status != FunctionEvaluationLimit {
t.Errorf("cas %v: status was not FunctionEvaluationLimit", cas)
}
if !floats.Equal(result.X, locs.RawRowView(minIdxFirst)) {
t.Errorf("cas %v: did not find minimum of shortened list concurrent", cas)
}
}
}
func swapSamples(m *mat.Dense, f []float64, i, j int) {
f[i], f[j] = f[j], f[i]
row := mat.Row(nil, i, m)
m.SetRow(i, m.RawRowView(j))
m.SetRow(j, row)
}
|