1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import (
"fmt"
"math"
"time"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
const (
nonpositiveDimension string = "optimize: non-positive input dimension"
negativeTasks string = "optimize: negative input number of tasks"
)
// Task is a type to communicate between the Method and the outer
// calling script.
type Task struct {
ID int
Op Operation
*Location
}
// Location represents a location in the optimization procedure.
type Location struct {
// X is the function input for the location.
X []float64
// F is the result of evaluating the function at X.
F float64
// Gradient holds the first-order partial derivatives
// of the function at X.
// The length of Gradient must match the length of X
// or be zero. If the capacity of Gradient is less
// than the length of X, a new slice will be allocated.
Gradient []float64
// Hessian holds the second-order partial derivatives
// of the function at X.
// The dimensions of Hessian must match the length of X
// or Hessian must be nil or empty. If Hessian is nil
// a new mat.SymDense will be allocated, if it is empty
// it will be resized to match the length of X.
Hessian *mat.SymDense
}
// Method is a type which can search for an optimum of an objective function.
type Method interface {
// Init initializes the method for optimization. The inputs are
// the problem dimension and number of available concurrent tasks.
//
// Init returns the number of concurrent processes to use, which must be
// less than or equal to tasks.
Init(dim, tasks int) (concurrent int)
// Run runs an optimization. The method sends Tasks on
// the operation channel (for performing function evaluations, major
// iterations, etc.). The result of the tasks will be returned on Result.
// See the documentation for Operation types for the possible operations.
//
// The caller of Run will signal the termination of the optimization
// (i.e. convergence from user settings) by sending a task with a PostIteration
// Op field on result. More tasks may still be sent on operation after this
// occurs, but only MajorIteration operations will still be conducted
// appropriately. Thus, it can not be guaranteed that all Evaluations sent
// on operation will be evaluated, however if an Evaluation is started,
// the results of that evaluation will be sent on results.
//
// The Method must read from the result channel until it is closed.
// During this, the Method may want to send new MajorIteration(s) on
// operation. Method then must close operation, and return from Run.
// These steps must establish a "happens-before" relationship between result
// being closed (externally) and Run closing operation, for example
// by using a range loop to read from result even if no results are expected.
//
// The last parameter to Run is a slice of tasks with length equal to
// the return from Init. Task has an ID field which may be
// set and modified by Method, and must not be modified by the caller.
// The first element of tasks contains information about the initial location.
// The Location.X field is always valid. The Operation field specifies which
// other values of Location are known. If Operation == NoOperation, none of
// the values should be used, otherwise the Evaluation operations will be
// composed to specify the valid fields. Methods are free to use or
// ignore these values.
//
// Successful execution of an Operation may require the Method to modify
// fields a Location. MajorIteration calls will not modify the values in
// the Location, but Evaluation operations will. Methods are encouraged to
// leave Location fields untouched to allow memory re-use. If data needs to
// be stored, the respective field should be set to nil -- Methods should
// not allocate Location memory themselves.
//
// Method may have its own specific convergence criteria, which can
// be communicated using a MethodDone operation. This will trigger a
// PostIteration to be sent on result, and the MethodDone task will not be
// returned on result. The Method must implement Statuser, and the
// call to Status must return a Status other than NotTerminated.
//
// The operation and result tasks are guaranteed to have a buffer length
// equal to the return from Init.
Run(operation chan<- Task, result <-chan Task, tasks []Task)
// Uses checks if the Method is suited to the optimization problem. The
// input is the available functions in Problem to call, and the returns are
// the functions which may be used and an error if there is a mismatch
// between the Problem and the Method's capabilities.
Uses(has Available) (uses Available, err error)
}
// Minimize uses an optimizer to search for a minimum of a function. A
// maximization problem can be transformed into a minimization problem by
// multiplying the function by -1.
//
// The first argument represents the problem to be minimized. Its fields are
// routines that evaluate the objective function, gradient, and other
// quantities related to the problem. The objective function, p.Func, must not
// be nil. The optimization method used may require other fields to be non-nil
// as specified by method.Needs. Minimize will panic if these are not met. The
// method can be determined automatically from the supplied problem which is
// described below.
//
// If p.Status is not nil, it is called before every evaluation. If the
// returned Status is other than NotTerminated or if the error is not nil, the
// optimization run is terminated.
//
// The second argument specifies the initial location for the optimization.
// Some Methods do not require an initial location, but initX must still be
// specified for the dimension of the optimization problem.
//
// The third argument contains the settings for the minimization. If settings
// is nil, the zero value will be used, see the documentation of the Settings
// type for more information, and see the warning below. All settings will be
// honored for all Methods, even if that setting is counter-productive to the
// method. Minimize cannot guarantee strict adherence to the evaluation bounds
// specified when performing concurrent evaluations and updates.
//
// The final argument is the optimization method to use. If method == nil, then
// an appropriate default is chosen based on the properties of the other arguments
// (dimension, gradient-free or gradient-based, etc.). If method is not nil,
// Minimize panics if the Problem is not consistent with the Method (Uses
// returns an error).
//
// Minimize returns a Result struct and any error that occurred. See the
// documentation of Result for more information.
//
// See the documentation for Method for the details on implementing a method.
//
// Be aware that the default settings of Minimize are to accurately find the
// minimum. For certain functions and optimization methods, this can take many
// function evaluations. The Settings input struct can be used to limit this,
// for example by modifying the maximum function evaluations or gradient tolerance.
func Minimize(p Problem, initX []float64, settings *Settings, method Method) (*Result, error) {
startTime := time.Now()
if method == nil {
method = getDefaultMethod(&p)
}
if settings == nil {
settings = &Settings{}
}
stats := &Stats{}
dim := len(initX)
err := checkOptimization(p, dim, settings.Recorder)
if err != nil {
return nil, err
}
optLoc := newLocation(dim) // This must have an allocated X field.
optLoc.F = math.Inf(1)
initOp, initLoc := getInitLocation(dim, initX, settings.InitValues)
converger := settings.Converger
if converger == nil {
converger = defaultFunctionConverge()
}
converger.Init(dim)
stats.Runtime = time.Since(startTime)
// Send initial location to Recorder
if settings.Recorder != nil {
err = settings.Recorder.Record(optLoc, InitIteration, stats)
if err != nil {
return nil, err
}
}
// Run optimization
var status Status
status, err = minimize(&p, method, settings, converger, stats, initOp, initLoc, optLoc, startTime)
// Cleanup and collect results
if settings.Recorder != nil && err == nil {
err = settings.Recorder.Record(optLoc, PostIteration, stats)
}
stats.Runtime = time.Since(startTime)
return &Result{
Location: *optLoc,
Stats: *stats,
Status: status,
}, err
}
func getDefaultMethod(p *Problem) Method {
if p.Grad != nil {
return &LBFGS{}
}
return &NelderMead{}
}
// minimize performs an optimization. minimize updates the settings and optLoc,
// and returns the final Status and error.
func minimize(prob *Problem, method Method, settings *Settings, converger Converger, stats *Stats, initOp Operation, initLoc, optLoc *Location, startTime time.Time) (Status, error) {
dim := len(optLoc.X)
nTasks := settings.Concurrent
if nTasks == 0 {
nTasks = 1
}
has := availFromProblem(*prob)
_, initErr := method.Uses(has)
if initErr != nil {
panic(fmt.Sprintf("optimize: specified method inconsistent with Problem: %v", initErr))
}
newNTasks := method.Init(dim, nTasks)
if newNTasks > nTasks {
panic("optimize: too many tasks returned by Method")
}
nTasks = newNTasks
// Launch the method. The method communicates tasks using the operations
// channel, and results is used to return the evaluated results.
operations := make(chan Task, nTasks)
results := make(chan Task, nTasks)
go func() {
tasks := make([]Task, nTasks)
tasks[0].Location = initLoc
tasks[0].Op = initOp
for i := 1; i < len(tasks); i++ {
tasks[i].Location = newLocation(dim)
}
method.Run(operations, results, tasks)
}()
// Algorithmic Overview:
// There are three pieces to performing a concurrent optimization,
// the distributor, the workers, and the stats combiner. At a high level,
// the distributor reads in tasks sent by method, sending evaluations to the
// workers, and forwarding other operations to the statsCombiner. The workers
// read these forwarded evaluation tasks, evaluate the relevant parts of Problem
// and forward the results on to the stats combiner. The stats combiner reads
// in results from the workers, as well as tasks from the distributor, and
// uses them to update optimization statistics (function evaluations, etc.)
// and to check optimization convergence.
//
// The complicated part is correctly shutting down the optimization. The
// procedure is as follows. First, the stats combiner closes done and sends
// a PostIteration to the method. The distributor then reads that done has
// been closed, and closes the channel with the workers. At this point, no
// more evaluation operations will be executed. As the workers finish their
// evaluations, they forward the results onto the stats combiner, and then
// signal their shutdown to the stats combiner. When all workers have successfully
// finished, the stats combiner closes the results channel, signaling to the
// method that all results have been collected. At this point, the method
// may send MajorIteration(s) to update an optimum location based on these
// last returned results, and then the method will close the operations channel.
// The Method must ensure that the closing of results happens before the
// closing of operations in order to ensure proper shutdown order.
// Now that no more tasks will be commanded by the method, the distributor
// closes statsChan, and with no more statistics to update the optimization
// concludes.
workerChan := make(chan Task) // Delegate tasks to the workers.
statsChan := make(chan Task) // Send evaluation updates.
done := make(chan struct{}) // Communicate the optimization is done.
// Read tasks from the method and distribute as appropriate.
distributor := func() {
for {
select {
case task := <-operations:
switch task.Op {
case InitIteration:
panic("optimize: Method returned InitIteration")
case PostIteration:
panic("optimize: Method returned PostIteration")
case NoOperation, MajorIteration, MethodDone:
statsChan <- task
default:
if !task.Op.isEvaluation() {
panic("optimize: expecting evaluation operation")
}
workerChan <- task
}
case <-done:
// No more evaluations will be sent, shut down the workers, and
// read the final tasks.
close(workerChan)
for task := range operations {
if task.Op == MajorIteration {
statsChan <- task
}
}
close(statsChan)
return
}
}
}
go distributor()
// Evaluate the Problem concurrently.
worker := func() {
x := make([]float64, dim)
for task := range workerChan {
evaluate(prob, task.Location, task.Op, x)
statsChan <- task
}
// Signal successful worker completion.
statsChan <- Task{Op: signalDone}
}
for i := 0; i < nTasks; i++ {
go worker()
}
var (
workersDone int // effective wg for the workers
status Status
err error
finalStatus Status
finalError error
)
// Update optimization statistics and check convergence.
var methodDone bool
for task := range statsChan {
switch task.Op {
default:
if !task.Op.isEvaluation() {
panic("minimize: evaluation task expected")
}
updateEvaluationStats(stats, task.Op)
status, err = checkEvaluationLimits(prob, stats, settings)
case signalDone:
workersDone++
if workersDone == nTasks {
close(results)
}
continue
case NoOperation:
// Just send the task back.
case MajorIteration:
status = performMajorIteration(optLoc, task.Location, stats, converger, startTime, settings)
case MethodDone:
methodDone = true
status = MethodConverge
}
if settings.Recorder != nil && status == NotTerminated && err == nil {
stats.Runtime = time.Since(startTime)
// Allow err to be overloaded if the Recorder fails.
err = settings.Recorder.Record(task.Location, task.Op, stats)
if err != nil {
status = Failure
}
}
// If this is the first termination status, trigger the conclusion of
// the optimization.
if status != NotTerminated || err != nil {
select {
case <-done:
default:
finalStatus = status
finalError = err
results <- Task{
Op: PostIteration,
}
close(done)
}
}
// Send the result back to the Problem if there are still active workers.
if workersDone != nTasks && task.Op != MethodDone {
results <- task
}
}
// This code block is here rather than above to ensure Status() is not called
// before Method.Run closes operations.
if methodDone {
statuser, ok := method.(Statuser)
if !ok {
panic("optimize: method returned MethodDone but is not a Statuser")
}
finalStatus, finalError = statuser.Status()
if finalStatus == NotTerminated {
panic("optimize: method returned MethodDone but a NotTerminated status")
}
}
return finalStatus, finalError
}
func defaultFunctionConverge() *FunctionConverge {
return &FunctionConverge{
Absolute: 1e-10,
Iterations: 100,
}
}
// newLocation allocates a new location structure with an X field of the
// appropriate size.
func newLocation(dim int) *Location {
return &Location{
X: make([]float64, dim),
}
}
// getInitLocation checks the validity of initLocation and initOperation and
// returns the initial values as a *Location.
func getInitLocation(dim int, initX []float64, initValues *Location) (Operation, *Location) {
loc := newLocation(dim)
if initX == nil {
if initValues != nil {
panic("optimize: initValues is non-nil but no initial location specified")
}
return NoOperation, loc
}
copy(loc.X, initX)
if initValues == nil {
return NoOperation, loc
} else {
if initValues.X != nil {
panic("optimize: location specified in InitValues (only use InitX)")
}
}
loc.F = initValues.F
op := FuncEvaluation
if initValues.Gradient != nil {
if len(initValues.Gradient) != dim {
panic("optimize: initial gradient does not match problem dimension")
}
loc.Gradient = initValues.Gradient
op |= GradEvaluation
}
if initValues.Hessian != nil {
if initValues.Hessian.SymmetricDim() != dim {
panic("optimize: initial Hessian does not match problem dimension")
}
loc.Hessian = initValues.Hessian
op |= HessEvaluation
}
return op, loc
}
func checkOptimization(p Problem, dim int, recorder Recorder) error {
if p.Func == nil {
panic(badProblem)
}
if dim <= 0 {
panic("optimize: impossible problem dimension")
}
if p.Status != nil {
_, err := p.Status()
if err != nil {
return err
}
}
if recorder != nil {
err := recorder.Init()
if err != nil {
return err
}
}
return nil
}
// evaluate evaluates the routines specified by the Operation at loc.X, and stores
// the answer into loc. loc.X is copied into x before evaluating in order to
// prevent the routines from modifying it.
func evaluate(p *Problem, loc *Location, op Operation, x []float64) {
if !op.isEvaluation() {
panic(fmt.Sprintf("optimize: invalid evaluation %v", op))
}
copy(x, loc.X)
if op&FuncEvaluation != 0 {
loc.F = p.Func(x)
}
if op&GradEvaluation != 0 {
// Make sure we have a destination in which to place the gradient.
if len(loc.Gradient) == 0 {
if cap(loc.Gradient) < len(x) {
loc.Gradient = make([]float64, len(x))
} else {
loc.Gradient = loc.Gradient[:len(x)]
}
}
p.Grad(loc.Gradient, x)
}
if op&HessEvaluation != 0 {
// Make sure we have a destination in which to place the Hessian.
switch {
case loc.Hessian == nil:
loc.Hessian = mat.NewSymDense(len(x), nil)
case loc.Hessian.IsEmpty():
loc.Hessian.ReuseAsSym(len(x))
}
p.Hess(loc.Hessian, x)
}
}
// updateEvaluationStats updates the statistics based on the operation.
func updateEvaluationStats(stats *Stats, op Operation) {
if op&FuncEvaluation != 0 {
stats.FuncEvaluations++
}
if op&GradEvaluation != 0 {
stats.GradEvaluations++
}
if op&HessEvaluation != 0 {
stats.HessEvaluations++
}
}
// checkLocationConvergence checks if the current optimal location satisfies
// any of the convergence criteria based on the function location.
//
// checkLocationConvergence returns NotTerminated if the Location does not satisfy
// the convergence criteria given by settings. Otherwise a corresponding status is
// returned.
// Unlike checkLimits, checkConvergence is called only at MajorIterations.
func checkLocationConvergence(loc *Location, settings *Settings, converger Converger) Status {
if math.IsInf(loc.F, -1) {
return FunctionNegativeInfinity
}
if loc.Gradient != nil && settings.GradientThreshold > 0 {
norm := floats.Norm(loc.Gradient, math.Inf(1))
if norm < settings.GradientThreshold {
return GradientThreshold
}
}
return converger.Converged(loc)
}
// checkEvaluationLimits checks the optimization limits after an evaluation
// Operation. It checks the number of evaluations (of various kinds) and checks
// the status of the Problem, if applicable.
func checkEvaluationLimits(p *Problem, stats *Stats, settings *Settings) (Status, error) {
if p.Status != nil {
status, err := p.Status()
if err != nil || status != NotTerminated {
return status, err
}
}
if settings.FuncEvaluations > 0 && stats.FuncEvaluations >= settings.FuncEvaluations {
return FunctionEvaluationLimit, nil
}
if settings.GradEvaluations > 0 && stats.GradEvaluations >= settings.GradEvaluations {
return GradientEvaluationLimit, nil
}
if settings.HessEvaluations > 0 && stats.HessEvaluations >= settings.HessEvaluations {
return HessianEvaluationLimit, nil
}
return NotTerminated, nil
}
// checkIterationLimits checks the limits on iterations affected by MajorIteration.
func checkIterationLimits(loc *Location, stats *Stats, settings *Settings) Status {
if settings.MajorIterations > 0 && stats.MajorIterations >= settings.MajorIterations {
return IterationLimit
}
if settings.Runtime > 0 && stats.Runtime >= settings.Runtime {
return RuntimeLimit
}
return NotTerminated
}
// performMajorIteration does all of the steps needed to perform a MajorIteration.
// It increments the iteration count, updates the optimal location, and checks
// the necessary convergence criteria.
func performMajorIteration(optLoc, loc *Location, stats *Stats, converger Converger, startTime time.Time, settings *Settings) Status {
optLoc.F = loc.F
copy(optLoc.X, loc.X)
if loc.Gradient == nil {
optLoc.Gradient = nil
} else {
if optLoc.Gradient == nil {
optLoc.Gradient = make([]float64, len(loc.Gradient))
}
copy(optLoc.Gradient, loc.Gradient)
}
stats.MajorIterations++
stats.Runtime = time.Since(startTime)
status := checkLocationConvergence(optLoc, settings, converger)
if status != NotTerminated {
return status
}
return checkIterationLimits(optLoc, stats, settings)
}
|