1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import "math"
var _ Linesearcher = (*MoreThuente)(nil)
// MoreThuente is a Linesearcher that finds steps that satisfy both the
// sufficient decrease and curvature conditions (the strong Wolfe conditions).
//
// References:
// - More, J.J. and D.J. Thuente: Line Search Algorithms with Guaranteed Sufficient
// Decrease. ACM Transactions on Mathematical Software 20(3) (1994), 286-307
type MoreThuente struct {
// DecreaseFactor is the constant factor in the sufficient decrease
// (Armijo) condition.
// It must be in the interval [0, 1). The default value is 0.
DecreaseFactor float64
// CurvatureFactor is the constant factor in the Wolfe conditions. Smaller
// values result in a more exact line search.
// A set value must be in the interval (0, 1). If it is zero, it will be
// defaulted to 0.9.
CurvatureFactor float64
// StepTolerance sets the minimum acceptable width for the linesearch
// interval. If the relative interval length is less than this value,
// ErrLinesearcherFailure is returned.
// It must be non-negative. If it is zero, it will be defaulted to 1e-10.
StepTolerance float64
// MinimumStep is the minimum step that the linesearcher will take.
// It must be non-negative and less than MaximumStep. Defaults to no
// minimum (a value of 0).
MinimumStep float64
// MaximumStep is the maximum step that the linesearcher will take.
// It must be greater than MinimumStep. If it is zero, it will be defaulted
// to 1e20.
MaximumStep float64
bracketed bool // Indicates if a minimum has been bracketed.
fInit float64 // Function value at step = 0.
gInit float64 // Derivative value at step = 0.
// When stage is 1, the algorithm updates the interval given by x and y
// so that it contains a minimizer of the modified function
// psi(step) = f(step) - f(0) - DecreaseFactor * step * f'(0).
// When stage is 2, the interval is updated so that it contains a minimizer
// of f.
stage int
step float64 // Current step.
lower, upper float64 // Lower and upper bounds on the next step.
x float64 // Endpoint of the interval with a lower function value.
fx, gx float64 // Data at x.
y float64 // The other endpoint.
fy, gy float64 // Data at y.
width [2]float64 // Width of the interval at two previous iterations.
}
const (
mtMinGrowthFactor float64 = 1.1
mtMaxGrowthFactor float64 = 4
)
func (mt *MoreThuente) Init(f, g float64, step float64) Operation {
// Based on the original Fortran code that is available, for example, from
// http://ftp.mcs.anl.gov/pub/MINPACK-2/csrch/
// as part of
// MINPACK-2 Project. November 1993.
// Argonne National Laboratory and University of Minnesota.
// Brett M. Averick, Richard G. Carter, and Jorge J. Moré.
if g >= 0 {
panic("morethuente: initial derivative is non-negative")
}
if step <= 0 {
panic("morethuente: invalid initial step")
}
if mt.CurvatureFactor == 0 {
mt.CurvatureFactor = 0.9
}
if mt.StepTolerance == 0 {
mt.StepTolerance = 1e-10
}
if mt.MaximumStep == 0 {
mt.MaximumStep = 1e20
}
if mt.MinimumStep < 0 {
panic("morethuente: minimum step is negative")
}
if mt.MaximumStep <= mt.MinimumStep {
panic("morethuente: maximum step is not greater than minimum step")
}
if mt.DecreaseFactor < 0 || mt.DecreaseFactor >= 1 {
panic("morethuente: invalid decrease factor")
}
if mt.CurvatureFactor <= 0 || mt.CurvatureFactor >= 1 {
panic("morethuente: invalid curvature factor")
}
if mt.StepTolerance <= 0 {
panic("morethuente: step tolerance is not positive")
}
if step < mt.MinimumStep {
step = mt.MinimumStep
}
if step > mt.MaximumStep {
step = mt.MaximumStep
}
mt.bracketed = false
mt.stage = 1
mt.fInit = f
mt.gInit = g
mt.x, mt.fx, mt.gx = 0, f, g
mt.y, mt.fy, mt.gy = 0, f, g
mt.lower = 0
mt.upper = step + mtMaxGrowthFactor*step
mt.width[0] = mt.MaximumStep - mt.MinimumStep
mt.width[1] = 2 * mt.width[0]
mt.step = step
return FuncEvaluation | GradEvaluation
}
func (mt *MoreThuente) Iterate(f, g float64) (Operation, float64, error) {
if mt.stage == 0 {
panic("morethuente: Init has not been called")
}
gTest := mt.DecreaseFactor * mt.gInit
fTest := mt.fInit + mt.step*gTest
if mt.bracketed {
if mt.step <= mt.lower || mt.step >= mt.upper || mt.upper-mt.lower <= mt.StepTolerance*mt.upper {
// step contains the best step found (see below).
return NoOperation, mt.step, ErrLinesearcherFailure
}
}
if mt.step == mt.MaximumStep && f <= fTest && g <= gTest {
return NoOperation, mt.step, ErrLinesearcherBound
}
if mt.step == mt.MinimumStep && (f > fTest || g >= gTest) {
return NoOperation, mt.step, ErrLinesearcherFailure
}
// Test for convergence.
if f <= fTest && math.Abs(g) <= mt.CurvatureFactor*(-mt.gInit) {
mt.stage = 0
return MajorIteration, mt.step, nil
}
if mt.stage == 1 && f <= fTest && g >= 0 {
mt.stage = 2
}
if mt.stage == 1 && f <= mt.fx && f > fTest {
// Lower function value but the decrease is not sufficient .
// Compute values and derivatives of the modified function at step, x, y.
fm := f - mt.step*gTest
fxm := mt.fx - mt.x*gTest
fym := mt.fy - mt.y*gTest
gm := g - gTest
gxm := mt.gx - gTest
gym := mt.gy - gTest
// Update x, y and step.
mt.nextStep(fxm, gxm, fym, gym, fm, gm)
// Recover values and derivates of the non-modified function at x and y.
mt.fx = fxm + mt.x*gTest
mt.fy = fym + mt.y*gTest
mt.gx = gxm + gTest
mt.gy = gym + gTest
} else {
// Update x, y and step.
mt.nextStep(mt.fx, mt.gx, mt.fy, mt.gy, f, g)
}
if mt.bracketed {
// Monitor the length of the bracketing interval. If the interval has
// not been reduced sufficiently after two steps, use bisection to
// force its length to zero.
width := mt.y - mt.x
if math.Abs(width) >= 2.0/3*mt.width[1] {
mt.step = mt.x + 0.5*width
}
mt.width[0], mt.width[1] = math.Abs(width), mt.width[0]
}
if mt.bracketed {
mt.lower = math.Min(mt.x, mt.y)
mt.upper = math.Max(mt.x, mt.y)
} else {
mt.lower = mt.step + mtMinGrowthFactor*(mt.step-mt.x)
mt.upper = mt.step + mtMaxGrowthFactor*(mt.step-mt.x)
}
// Force the step to be in [MinimumStep, MaximumStep].
mt.step = math.Max(mt.MinimumStep, math.Min(mt.step, mt.MaximumStep))
if mt.bracketed {
if mt.step <= mt.lower || mt.step >= mt.upper || mt.upper-mt.lower <= mt.StepTolerance*mt.upper {
// If further progress is not possible, set step to the best step
// obtained during the search.
mt.step = mt.x
}
}
return FuncEvaluation | GradEvaluation, mt.step, nil
}
// nextStep computes the next safeguarded step and updates the interval that
// contains a step that satisfies the sufficient decrease and curvature
// conditions.
func (mt *MoreThuente) nextStep(fx, gx, fy, gy, f, g float64) {
x := mt.x
y := mt.y
step := mt.step
gNeg := g < 0
if gx < 0 {
gNeg = !gNeg
}
var next float64
var bracketed bool
switch {
case f > fx:
// A higher function value. The minimum is bracketed between x and step.
// We want the next step to be closer to x because the function value
// there is lower.
theta := 3*(fx-f)/(step-x) + gx + g
s := math.Max(math.Abs(gx), math.Abs(g))
s = math.Max(s, math.Abs(theta))
gamma := s * math.Sqrt((theta/s)*(theta/s)-(gx/s)*(g/s))
if step < x {
gamma *= -1
}
p := gamma - gx + theta
q := gamma - gx + gamma + g
r := p / q
stpc := x + r*(step-x)
stpq := x + gx/((fx-f)/(step-x)+gx)/2*(step-x)
if math.Abs(stpc-x) < math.Abs(stpq-x) {
// The cubic step is closer to x than the quadratic step.
// Take the cubic step.
next = stpc
} else {
// If f is much larger than fx, then the quadratic step may be too
// close to x. Therefore heuristically take the average of the
// cubic and quadratic steps.
next = stpc + (stpq-stpc)/2
}
bracketed = true
case gNeg:
// A lower function value and derivatives of opposite sign. The minimum
// is bracketed between x and step. If we choose a step that is far
// from step, the next iteration will also likely fall in this case.
theta := 3*(fx-f)/(step-x) + gx + g
s := math.Max(math.Abs(gx), math.Abs(g))
s = math.Max(s, math.Abs(theta))
gamma := s * math.Sqrt((theta/s)*(theta/s)-(gx/s)*(g/s))
if step > x {
gamma *= -1
}
p := gamma - g + theta
q := gamma - g + gamma + gx
r := p / q
stpc := step + r*(x-step)
stpq := step + g/(g-gx)*(x-step)
if math.Abs(stpc-step) > math.Abs(stpq-step) {
// The cubic step is farther from x than the quadratic step.
// Take the cubic step.
next = stpc
} else {
// Take the quadratic step.
next = stpq
}
bracketed = true
case math.Abs(g) < math.Abs(gx):
// A lower function value, derivatives of the same sign, and the
// magnitude of the derivative decreases. Extrapolate function values
// at x and step so that the next step lies between step and y.
theta := 3*(fx-f)/(step-x) + gx + g
s := math.Max(math.Abs(gx), math.Abs(g))
s = math.Max(s, math.Abs(theta))
gamma := s * math.Sqrt(math.Max(0, (theta/s)*(theta/s)-(gx/s)*(g/s)))
if step > x {
gamma *= -1
}
p := gamma - g + theta
q := gamma + gx - g + gamma
r := p / q
var stpc float64
switch {
case r < 0 && gamma != 0:
stpc = step + r*(x-step)
case step > x:
stpc = mt.upper
default:
stpc = mt.lower
}
stpq := step + g/(g-gx)*(x-step)
if mt.bracketed {
// We are extrapolating so be cautious and take the step that
// is closer to step.
if math.Abs(stpc-step) < math.Abs(stpq-step) {
next = stpc
} else {
next = stpq
}
// Modify next if it is close to or beyond y.
if step > x {
next = math.Min(step+2.0/3*(y-step), next)
} else {
next = math.Max(step+2.0/3*(y-step), next)
}
} else {
// Minimum has not been bracketed so take the larger step...
if math.Abs(stpc-step) > math.Abs(stpq-step) {
next = stpc
} else {
next = stpq
}
// ...but within reason.
next = math.Max(mt.lower, math.Min(next, mt.upper))
}
default:
// A lower function value, derivatives of the same sign, and the
// magnitude of the derivative does not decrease. The function seems to
// decrease rapidly in the direction of the step.
switch {
case mt.bracketed:
theta := 3*(f-fy)/(y-step) + gy + g
s := math.Max(math.Abs(gy), math.Abs(g))
s = math.Max(s, math.Abs(theta))
gamma := s * math.Sqrt((theta/s)*(theta/s)-(gy/s)*(g/s))
if step > y {
gamma *= -1
}
p := gamma - g + theta
q := gamma - g + gamma + gy
r := p / q
next = step + r*(y-step)
case step > x:
next = mt.upper
default:
next = mt.lower
}
}
if f > fx {
// x is still the best step.
mt.y = step
mt.fy = f
mt.gy = g
} else {
// step is the new best step.
if gNeg {
mt.y = x
mt.fy = fx
mt.gy = gx
}
mt.x = step
mt.fx = f
mt.gx = g
}
mt.bracketed = bracketed
mt.step = next
}
|