File: barneshut2.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (274 lines) | stat: -rw-r--r-- 6,692 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package barneshut

import (
	"errors"
	"fmt"
	"math"

	"gonum.org/v1/gonum/spatial/r2"
)

// Particle2 is a particle in a plane.
type Particle2 interface {
	Coord2() r2.Vec
	Mass() float64
}

// Force2 is a force modeling function for interactions between p1 and p2,
// m1 is the mass of p1 and m2 of p2. The vector v is the vector from p1 to
// p2. The returned value is the force vector acting on p1.
//
// In models where the identity of particles must be known, p1 and p2 may be
// compared. Force2 may be passed nil for p2 when the Barnes-Hut approximation
// is being used. A nil p2 indicates that the second mass center is an
// aggregate.
type Force2 func(p1, p2 Particle2, m1, m2 float64, v r2.Vec) r2.Vec

// Gravity2 returns a vector force on m1 by m2, equal to (m1⋅m2)/‖v‖²
// in the directions of v. Gravity2 ignores the identity of the interacting
// particles and returns a zero vector when the two particles are
// coincident, but performs no other sanity checks.
func Gravity2(_, _ Particle2, m1, m2 float64, v r2.Vec) r2.Vec {
	d2 := v.X*v.X + v.Y*v.Y
	if d2 == 0 {
		return r2.Vec{}
	}
	return r2.Scale((m1*m2)/(d2*math.Sqrt(d2)), v)
}

// Plane implements Barnes-Hut force approximation calculations.
type Plane struct {
	root tile

	Particles []Particle2
}

// NewPlane returns a new Plane. If the plane is too large to allow
// particle coordinates to be distinguished due to floating point
// precision limits, NewPlane will return a non-nil error.
func NewPlane(p []Particle2) (*Plane, error) {
	q := Plane{Particles: p}
	err := q.Reset()
	if err != nil {
		return nil, err
	}
	return &q, nil
}

// Reset reconstructs the Barnes-Hut tree. Reset must be called if the
// Particles field or elements of Particles have been altered, unless
// ForceOn is called with theta=0 or no data structures have been
// previously built. If the plane is too large to allow particle
// coordinates to be distinguished due to floating point precision
// limits, Reset will return a non-nil error.
func (q *Plane) Reset() (err error) {
	if len(q.Particles) == 0 {
		q.root = tile{}
		return nil
	}

	q.root = tile{
		particle: q.Particles[0],
		center:   q.Particles[0].Coord2(),
		mass:     q.Particles[0].Mass(),
	}
	q.root.bounds.Min = q.root.center
	q.root.bounds.Max = q.root.center
	for _, e := range q.Particles[1:] {
		c := e.Coord2()
		if c.X < q.root.bounds.Min.X {
			q.root.bounds.Min.X = c.X
		}
		if c.X > q.root.bounds.Max.X {
			q.root.bounds.Max.X = c.X
		}
		if c.Y < q.root.bounds.Min.Y {
			q.root.bounds.Min.Y = c.Y
		}
		if c.Y > q.root.bounds.Max.Y {
			q.root.bounds.Max.Y = c.Y
		}
	}

	defer func() {
		switch r := recover(); r {
		case nil:
		case planeTooBig:
			err = planeTooBig
		default:
			panic(r)
		}
	}()

	// TODO(kortschak): Partially parallelise this by
	// choosing the direction and using one of four
	// goroutines to work on each root quadrant.
	for _, e := range q.Particles[1:] {
		q.root.insert(e)
	}
	q.root.summarize()
	return nil
}

var planeTooBig = errors.New("barneshut: plane too big")

// ForceOn returns a force vector on p given p's mass and the force function, f,
// using the Barnes-Hut theta approximation parameter.
//
// Calls to f will include p in the p1 position and a non-nil p2 if the force
// interaction is with a non-aggregate mass center, otherwise p2 will be nil.
//
// It is safe to call ForceOn concurrently.
func (q *Plane) ForceOn(p Particle2, theta float64, f Force2) (force r2.Vec) {
	var empty tile
	if theta > 0 && q.root != empty {
		return q.root.forceOn(p, p.Coord2(), p.Mass(), theta, f)
	}

	// For the degenerate case, just iterate over the
	// slice of particles rather than walking the tree.
	var v r2.Vec
	m := p.Mass()
	pv := p.Coord2()
	for _, e := range q.Particles {
		v = r2.Add(v, f(p, e, m, e.Mass(), r2.Sub(e.Coord2(), pv)))
	}
	return v
}

// tile is a quad tree quadrant with Barnes-Hut extensions.
type tile struct {
	particle Particle2

	bounds r2.Box

	nodes [4]*tile

	center r2.Vec
	mass   float64
}

// insert inserts p into the subtree rooted at t.
func (t *tile) insert(p Particle2) {
	if t.particle == nil {
		for _, q := range t.nodes {
			if q != nil {
				t.passDown(p)
				return
			}
		}
		t.particle = p
		t.center = p.Coord2()
		t.mass = p.Mass()
		return
	}
	t.passDown(p)
	t.passDown(t.particle)
	t.particle = nil
	t.center = r2.Vec{}
	t.mass = 0
}

func (t *tile) passDown(p Particle2) {
	dir := quadrantOf(t.bounds, p)
	if t.nodes[dir] == nil {
		t.nodes[dir] = &tile{bounds: splitPlane(t.bounds, dir)}
	}
	t.nodes[dir].insert(p)
}

const (
	ne = iota
	se
	sw
	nw
)

// quadrantOf returns which quadrant of b that p should be placed in.
func quadrantOf(b r2.Box, p Particle2) int {
	center := r2.Vec{
		X: (b.Min.X + b.Max.X) / 2,
		Y: (b.Min.Y + b.Max.Y) / 2,
	}
	c := p.Coord2()
	if checkBounds && (c.X < b.Min.X || b.Max.X < c.X || c.Y < b.Min.Y || b.Max.Y < c.Y) {
		panic(fmt.Sprintf("p out of range %+v: %#v", b, p))
	}
	if c.X < center.X {
		if c.Y < center.Y {
			return nw
		} else {
			return sw
		}
	} else {
		if c.Y < center.Y {
			return ne
		} else {
			return se
		}
	}
}

// splitPlane returns a quadrant subdivision of b in the given direction.
func splitPlane(b r2.Box, dir int) r2.Box {
	old := b
	halfX := (b.Max.X - b.Min.X) / 2
	halfY := (b.Max.Y - b.Min.Y) / 2
	switch dir {
	case ne:
		b.Min.X += halfX
		b.Max.Y -= halfY
	case se:
		b.Min.X += halfX
		b.Min.Y += halfY
	case sw:
		b.Max.X -= halfX
		b.Min.Y += halfY
	case nw:
		b.Max.X -= halfX
		b.Max.Y -= halfY
	}
	if b == old {
		panic(planeTooBig)
	}
	return b
}

// summarize updates node masses and centers of mass.
func (t *tile) summarize() (center r2.Vec, mass float64) {
	for _, d := range &t.nodes {
		if d == nil {
			continue
		}
		c, m := d.summarize()
		t.center.X += c.X * m
		t.center.Y += c.Y * m
		t.mass += m
	}
	t.center.X /= t.mass
	t.center.Y /= t.mass
	return t.center, t.mass
}

// forceOn returns a force vector on p given p's mass m and the force
// calculation function, using the Barnes-Hut theta approximation parameter.
func (t *tile) forceOn(p Particle2, pt r2.Vec, m, theta float64, f Force2) (vector r2.Vec) {
	s := ((t.bounds.Max.X - t.bounds.Min.X) + (t.bounds.Max.Y - t.bounds.Min.Y)) / 2
	d := math.Hypot(pt.X-t.center.X, pt.Y-t.center.Y)
	if s/d < theta || t.particle != nil {
		return f(p, t.particle, m, t.mass, r2.Sub(t.center, pt))
	}

	var v r2.Vec
	for _, d := range &t.nodes {
		if d == nil {
			continue
		}
		v = r2.Add(v, d.forceOn(p, pt, m, theta, f))
	}
	return v
}