File: hilbert.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (334 lines) | stat: -rw-r--r-- 9,230 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package curve

import (
	"errors"
	"fmt"
)

// ErrUnderflow is returned by Hilbert curve constructors when the power is less
// than 1.
var ErrUnderflow = errors.New("order is less than 1")

// ErrOverflow is returned (wrapped) by Hilbert curve constructors when the
// power would cause Len and Pos to overflow.
var ErrOverflow = errors.New("overflow int")

// The size of an int. Taken from src/math/const.go.
const intSize = 32 << (^uint(0) >> 63) // 32 or 64

// Hilbert2D is a 2-dimensional Hilbert curve.
type Hilbert2D struct{ order int }

// NewHilbert2D constructs a [Hilbert2D] of the given order. NewHilbert2D
// returns [ErrOverflow] (wrapped) if the order would cause Len and Pos to
// overflow.
func NewHilbert2D(order int) (Hilbert2D, error) {
	v := Hilbert2D{order: order}

	// The order must be greater than zero.
	if order < 1 {
		return v, ErrUnderflow
	}

	// The product of the order and number of dimensions must not exceed or
	// equal the size of an int.
	if order*2 >= intSize {
		return v, fmt.Errorf("a 2-dimensional, %d-order Hilbert curve will %w", order, ErrOverflow)
	}

	return v, nil
}

// Dims returns the spatial dimensions of the curve, which is {2ᵏ, 2ᵏ}, where k
// is the order.
func (h Hilbert2D) Dims() []int { return []int{1 << h.order, 1 << h.order} }

// Len returns the length of the curve, which is 2ⁿᵏ, where n is the dimension
// (2) and k is the order.
//
// Len will overflow if order is ≥ 16 on architectures where [int] is 32-bits,
// or ≥ 32 on architectures where [int] is 64-bits.
func (h Hilbert2D) Len() int { return 1 << (2 * h.order) }

func (h Hilbert2D) rot(n int, v []int, d int) {
	switch d {
	case 0:
		swap{0, 1}.do(n, v)
	case 3:
		flip{0, 1}.do(n, v)
	}
}

// Pos returns the linear position of the 3-spatial coordinate v along the
// curve. Pos modifies v.
//
// Pos will overflow if order is ≥ 16 on architectures where [int] is 32-bits,
// or ≥ 32 on architectures where [int] is 64-bits.
func (h Hilbert2D) Pos(v []int) int {
	var d int
	const dims = 2
	for n := h.order - 1; n >= 0; n-- {
		rx := (v[0] >> n) & 1
		ry := (v[1] >> n) & 1
		rd := ry<<1 | (ry ^ rx)
		d += rd << (dims * n)
		h.rot(h.order, v, rd)
	}
	return d
}

// Coord writes the spatial coordinates of pos to dst and returns it. If dst is
// nil, Coord allocates a new slice of length 2; otherwise Coord is
// allocation-free.
//
// Coord panics if dst is not nil and len(dst) is not equal to 2.
func (h Hilbert2D) Coord(dst []int, pos int) []int {
	if dst == nil {
		dst = make([]int, 2)
	} else if len(dst) != 2 {
		panic("len(dst) must equal 2")
	}
	for n := 0; n < h.order; n++ {
		e := pos & 3
		h.rot(n, dst[:], e)

		ry := e >> 1
		rx := (e>>0 ^ e>>1) & 1
		dst[0] += rx << n
		dst[1] += ry << n
		pos >>= 2
	}
	return dst
}

// Hilbert3D is a 3-dimensional Hilbert curve.
type Hilbert3D struct{ order int }

// NewHilbert3D constructs a [Hilbert3D] of the given order. NewHilbert3D
// returns [ErrOverflow] (wrapped) if the order would cause Len and Pos to
// overflow.
func NewHilbert3D(order int) (Hilbert3D, error) {
	v := Hilbert3D{order: order}

	// The order must be greater than zero.
	if order < 1 {
		return v, ErrUnderflow
	}

	// The product of the order and number of dimensions must not exceed or
	// equal the size of an int.
	if order*3 >= intSize {
		return v, fmt.Errorf("a 3-dimensional, %d-order Hilbert curve will %w", order, ErrOverflow)
	}

	return v, nil
}

// Dims returns the spatial dimensions of the curve, which is {2ᵏ, 2ᵏ, 2ᵏ}, where
// k is the order.
func (h Hilbert3D) Dims() []int { return []int{1 << h.order, 1 << h.order, 1 << h.order} }

// Len returns the length of the curve, which is 2ⁿᵏ, where n is the dimension
// (3) and k is the order.
//
// Len will overflow if order is ≥ 11 on architectures where [int] is 32-bits,
// or ≥ 21 on architectures where [int] is 64-bits.
func (h Hilbert3D) Len() int { return 1 << (3 * h.order) }

func (h Hilbert3D) rot(reverse bool, n int, v []int, d int) {
	switch d {
	case 0:
		do2(reverse, n, v, swap{1, 2}, swap{0, 2})
	case 1, 2:
		do2(reverse, n, v, swap{0, 2}, swap{1, 2})
	case 3, 4:
		invert{0, 1}.do(n, v)
	case 5, 6:
		do2(reverse, n, v, flip{0, 2}, flip{1, 2})
	case 7:
		do2(reverse, n, v, flip{1, 2}, flip{0, 2})
	}
}

// Pos returns the linear position of the 4-spatial coordinate v along the
// curve. Pos modifies v.
//
// Pos will overflow if order is ≥ 11 on architectures where [int] is 32-bits,
// or ≥ 21 on architectures where [int] is 64-bits.
func (h Hilbert3D) Pos(v []int) int {
	var d int
	const dims = 3
	for n := h.order - 1; n >= 0; n-- {
		rx := (v[0] >> n) & 1
		ry := (v[1] >> n) & 1
		rz := (v[2] >> n) & 1
		rd := rz<<2 | (rz^ry)<<1 | (rz ^ ry ^ rx)
		d += rd << (dims * n)
		h.rot(false, h.order, v, rd)
	}
	return d
}

// Coord writes the spatial coordinates of pos to dst and returns it. If dst is
// nil, Coord allocates a new slice of length 3; otherwise Coord is
// allocation-free.
//
// Coord panics if dst is not nil and len(dst) is not equal to 3.
func (h Hilbert3D) Coord(dst []int, pos int) []int {
	if dst == nil {
		dst = make([]int, 3)
	} else if len(dst) != 3 {
		panic("len(dst) must equal 3")
	}
	for n := 0; n < h.order; n++ {
		e := pos & 7
		h.rot(true, n, dst[:], e)

		rz := e >> 2
		ry := (e>>1 ^ e>>2) & 1
		rx := (e>>0 ^ e>>1) & 1
		dst[0] += rx << n
		dst[1] += ry << n
		dst[2] += rz << n
		pos >>= 3
	}
	return dst
}

// Hilbert4D is a 4-dimensional Hilbert curve.
type Hilbert4D struct{ order int }

// NewHilbert4D constructs a [Hilbert4D] of the given order. NewHilbert4D
// returns [ErrOverflow] (wrapped) if the order would cause Len and Pos to
// overflow.
func NewHilbert4D(order int) (Hilbert4D, error) {
	v := Hilbert4D{order: order}

	// The order must be greater than zero.
	if order < 1 {
		return v, ErrUnderflow
	}

	// The product of the order and number of dimensions must not exceed or
	// equal the size of an int.
	if order*4 >= intSize {
		return v, fmt.Errorf("a 4-dimensional, %d-order Hilbert curve will %w", order, ErrOverflow)
	}

	return v, nil
}

// Dims returns the spatial dimensions of the curve, which is {2ᵏ, 2ᵏ, 2ᵏ, 2ᵏ},
// where k is the order.
func (h Hilbert4D) Dims() []int { return []int{1 << h.order, 1 << h.order, 1 << h.order, 1 << h.order} }

// Len returns the length of the curve, which is 2ⁿᵏ, where n is the dimension
// (4) and k is the order.
//
// Len will overflow if order is ≥ 8 on architectures where [int] is 32-bits, or
// ≥ 16 on architectures where [int] is 64-bits.
func (h Hilbert4D) Len() int { return 1 << (4 * h.order) }

func (h Hilbert4D) rot(reverse bool, n int, v []int, d int) {
	switch d {
	case 0:
		do2(reverse, n, v, swap{1, 3}, swap{0, 3})
	case 1, 2:
		do2(reverse, n, v, swap{0, 3}, swap{1, 3})
	case 3, 4:
		do2(reverse, n, v, flip{0, 1}, swap{2, 3})
	case 5, 6:
		do2(reverse, n, v, flip{1, 2}, swap{2, 3})
	case 7, 8:
		invert{0, 2}.do(n, v)
	case 9, 10:
		do2(reverse, n, v, flip{1, 2}, flip{2, 3})
	case 11, 12:
		do2(reverse, n, v, flip{0, 1}, flip{2, 3})
	case 13, 14:
		do2(reverse, n, v, flip{0, 3}, flip{1, 3})
	case 15:
		do2(reverse, n, v, flip{1, 3}, flip{0, 3})
	}
}

// Pos returns the linear position of the 2-spatial coordinate v along the
// curve. Pos modifies v.
//
// Pos will overflow if order is ≥ 8 on architectures where [int] is 32-bits, or
// ≥ 16 on architectures where [int] is 64-bits.
func (h Hilbert4D) Pos(v []int) int {
	var d int
	const dims = 4
	for n := h.order - 1; n >= 0; n-- {
		var e int
		for i := dims - 1; i >= 0; i-- {
			v := v[i] >> n & 1
			e = e<<1 | (e^v)&1
		}

		d += e << (dims * n)
		h.rot(false, h.order, v, e)
	}
	return d
}

// Coord writes the spatial coordinates of pos to dst and returns it. If dst is
// nil, Coord allocates a new slice of length 4; otherwise Coord is
// allocation-free.
//
// Coord panics if dst is not nil and len(dst) is not equal to 4.
func (h Hilbert4D) Coord(dst []int, pos int) []int {
	if dst == nil {
		dst = make([]int, 4)
	} else if len(dst) != 4 {
		panic("len(dst) must equal 4")
	}
	N := 4
	for n := 0; n < h.order; n++ {
		e := pos & (1<<N - 1)
		h.rot(true, n, dst[:], e)

		for i, e := 0, e; i < N; i++ {
			dst[i] += (e ^ e>>1) & 1 << n
			e >>= 1
		}
		pos >>= N
	}
	return dst
}

type op interface{ do(int, []int) }

// invert I and J
type invert struct{ i, j int }

func (c invert) do(n int, v []int) { v[c.i], v[c.j] = v[c.i]^(1<<n-1), v[c.j]^(1<<n-1) }

// swap I and J
type swap struct{ i, j int }

func (c swap) do(n int, v []int) { v[c.i], v[c.j] = v[c.j], v[c.i] }

// swap and invert I and J
type flip struct{ i, j int }

func (c flip) do(n int, v []int) { v[c.i], v[c.j] = v[c.j]^(1<<n-1), v[c.i]^(1<<n-1) }

// do2 executes the given operations, optionally in reverse.
//
// Generic specialization reduces allocation (because it can eliminate interface
// value boxing) and improves performance
func do2[A, B op](reverse bool, n int, v []int, a A, b B) {
	if reverse {
		b.do(n, v)
		a.do(n, v)
	} else {
		a.do(n, v)
		b.do(n, v)
	}
}