File: hilbert_test.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (457 lines) | stat: -rw-r--r-- 11,259 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package curve

import (
	"errors"
	"fmt"
	"reflect"
	"slices"
	"strings"
	"testing"

	"golang.org/x/exp/rand"
)

func ExampleHilbert2D_Pos() {
	h := Hilbert2D{order: 3}

	for y := 0; y < 1<<h.order; y++ {
		for x := 0; x < 1<<h.order; x++ {
			if x > 0 {
				fmt.Print("  ")
			}
			fmt.Printf("%02x", h.Pos([]int{x, y}))
		}
		fmt.Println()
	}
	// Output:
	// 00  01  0e  0f  10  13  14  15
	// 03  02  0d  0c  11  12  17  16
	// 04  07  08  0b  1e  1d  18  19
	// 05  06  09  0a  1f  1c  1b  1a
	// 3a  39  36  35  20  23  24  25
	// 3b  38  37  34  21  22  27  26
	// 3c  3d  32  33  2e  2d  28  29
	// 3f  3e  31  30  2f  2c  2b  2a
}

func ExampleHilbert3D_Pos() {
	h := Hilbert3D{order: 2}

	for z := 0; z < 1<<h.order; z++ {
		for y := 0; y < 1<<h.order; y++ {
			for x := 0; x < 1<<h.order; x++ {
				if x > 0 {
					fmt.Print("  ")
				}
				fmt.Printf("%02x", h.Pos([]int{x, y, z}))
			}
			fmt.Println()
		}
		fmt.Println()
	}
	// Output:
	// 00  07  08  0b
	// 01  06  0f  0c
	// 1a  1b  10  13
	// 19  18  17  14
	//
	// 03  04  09  0a
	// 02  05  0e  0d
	// 1d  1c  11  12
	// 1e  1f  16  15
	//
	// 3c  3b  36  35
	// 3d  3a  31  32
	// 22  23  2e  2d
	// 21  20  29  2a
	//
	// 3f  38  37  34
	// 3e  39  30  33
	// 25  24  2f  2c
	// 26  27  28  2b
}

func ExampleHilbert4D_Pos() {
	h := Hilbert4D{order: 2}
	N := 1 << h.order
	for z := 0; z < N; z++ {
		if z > 0 {
			s := strings.Repeat("═", N*4-2)
			s = s + strings.Repeat("═╬═"+s, N-1)
			fmt.Println(s)
		}
		for y := 0; y < N; y++ {
			for w := 0; w < N; w++ {
				if w > 0 {
					fmt.Print(" ║ ")
				}
				for x := 0; x < N; x++ {
					if x > 0 {
						fmt.Print("  ")
					}
					fmt.Printf("%02x", h.Pos([]int{x, y, z, w}))
				}
			}
			fmt.Println()
		}
	}
	// Output:
	// 00  0f  10  13 ║ 03  0c  11  12 ║ fc  f3  ee  ed ║ ff  f0  ef  ec
	// 01  0e  1f  1c ║ 02  0d  1e  1d ║ fd  f2  e1  e2 ║ fe  f1  e0  e3
	// 32  31  20  23 ║ 35  36  21  22 ║ ca  c9  de  dd ║ cd  ce  df  dc
	// 33  30  2f  2c ║ 34  37  2e  2d ║ cb  c8  d1  d2 ║ cc  cf  d0  d3
	// ═══════════════╬════════════════╬════════════════╬═══════════════
	// 07  08  17  14 ║ 04  0b  16  15 ║ fb  f4  e9  ea ║ f8  f7  e8  eb
	// 06  09  18  1b ║ 05  0a  19  1a ║ fa  f5  e6  e5 ║ f9  f6  e7  e4
	// 3d  3e  27  24 ║ 3a  39  26  25 ║ c5  c6  d9  da ║ c2  c1  d8  db
	// 3c  3f  28  2b ║ 3b  38  29  2a ║ c4  c7  d6  d5 ║ c3  c0  d7  d4
	// ═══════════════╬════════════════╬════════════════╬═══════════════
	// 76  77  6c  6d ║ 79  78  6b  6a ║ 86  87  94  95 ║ 89  88  93  92
	// 75  74  63  62 ║ 7a  7b  64  65 ║ 85  84  9b  9a ║ 8a  8b  9c  9d
	// 42  41  5c  5d ║ 45  46  5b  5a ║ ba  b9  a4  a5 ║ bd  be  a3  a2
	// 43  40  53  52 ║ 44  47  54  55 ║ bb  b8  ab  aa ║ bc  bf  ac  ad
	// ═══════════════╬════════════════╬════════════════╬═══════════════
	// 71  70  6f  6e ║ 7e  7f  68  69 ║ 81  80  97  96 ║ 8e  8f  90  91
	// 72  73  60  61 ║ 7d  7c  67  66 ║ 82  83  98  99 ║ 8d  8c  9f  9e
	// 4d  4e  5f  5e ║ 4a  49  58  59 ║ b5  b6  a7  a6 ║ b2  b1  a0  a1
	// 4c  4f  50  51 ║ 4b  48  57  56 ║ b4  b7  a8  a9 ║ b3  b0  af  ae
}

func TestConstructors(t *testing.T) {
	const intSize = 32 << (^uint(0) >> 63) // 32 or 64

	t.Run("2D/Ok", func(t *testing.T) {
		_, err := NewHilbert2D(intSize/2 - 1)
		noError(t, err)
	})

	t.Run("3D/Ok", func(t *testing.T) {
		_, err := NewHilbert3D(intSize / 3)
		noError(t, err)
	})

	t.Run("4D/Ok", func(t *testing.T) {
		_, err := NewHilbert4D(intSize/4 - 1)
		noError(t, err)
	})

	t.Run("2D/Underflow", func(t *testing.T) {
		_, err := NewHilbert2D(0)
		errorIs(t, err, ErrUnderflow)
	})

	t.Run("3D/Underflow", func(t *testing.T) {
		_, err := NewHilbert3D(0)
		errorIs(t, err, ErrUnderflow)
	})

	t.Run("4D/Underflow", func(t *testing.T) {
		_, err := NewHilbert4D(0)
		errorIs(t, err, ErrUnderflow)
	})

	t.Run("2D/Overflow", func(t *testing.T) {
		_, err := NewHilbert2D(intSize / 2)
		errorIs(t, err, ErrOverflow)
	})

	t.Run("3D/Overflow", func(t *testing.T) {
		_, err := NewHilbert3D(intSize/3 + 1)
		errorIs(t, err, ErrOverflow)
	})

	t.Run("4D/Overflow", func(t *testing.T) {
		_, err := NewHilbert4D(intSize / 4)
		errorIs(t, err, ErrOverflow)
	})
}

func TestHilbert2D(t *testing.T) {
	for ord := 1; ord <= 4; ord++ {
		t.Run(fmt.Sprintf("Order/%d", ord), func(t *testing.T) {
			testCurve(t, Hilbert2D{order: ord})
		})
	}

	cases := map[int][]int{
		1: {
			0, 1,
			3, 2,
		},
		2: {
			0x0, 0x3, 0x4, 0x5,
			0x1, 0x2, 0x7, 0x6,
			0xE, 0xD, 0x8, 0x9,
			0xF, 0xC, 0xB, 0xA,
		},
		3: {
			0x00, 0x01, 0x0E, 0x0F, 0x10, 0x13, 0x14, 0x15,
			0x03, 0x02, 0x0D, 0x0C, 0x11, 0x12, 0x17, 0x16,
			0x04, 0x07, 0x08, 0x0B, 0x1E, 0x1D, 0x18, 0x19,
			0x05, 0x06, 0x09, 0x0A, 0x1F, 0x1C, 0x1B, 0x1A,
			0x3A, 0x39, 0x36, 0x35, 0x20, 0x23, 0x24, 0x25,
			0x3B, 0x38, 0x37, 0x34, 0x21, 0x22, 0x27, 0x26,
			0x3C, 0x3D, 0x32, 0x33, 0x2E, 0x2D, 0x28, 0x29,
			0x3F, 0x3E, 0x31, 0x30, 0x2F, 0x2C, 0x2B, 0x2A,
		},
	}

	for order, expected := range cases {
		t.Run(fmt.Sprintf("Case/%d", order), func(t *testing.T) {
			testCurveCase(t, Hilbert2D{order: order}, order, expected)
		})
	}
}

func TestHilbert3D(t *testing.T) {
	for ord := 1; ord <= 4; ord++ {
		t.Run(fmt.Sprintf("Order/%d", ord), func(t *testing.T) {
			testCurve(t, Hilbert3D{order: ord})
		})
	}

	cases := map[int][]int{
		1: {
			0, 1,
			3, 2,

			7, 6,
			4, 5,
		},
		2: {
			0x00, 0x07, 0x08, 0x0B,
			0x01, 0x06, 0x0F, 0x0C,
			0x1A, 0x1B, 0x10, 0x13,
			0x19, 0x18, 0x17, 0x14,

			0x03, 0x04, 0x09, 0x0A,
			0x02, 0x05, 0x0E, 0x0D,
			0x1D, 0x1C, 0x11, 0x12,
			0x1E, 0x1F, 0x16, 0x15,

			0x3C, 0x3B, 0x36, 0x35,
			0x3D, 0x3A, 0x31, 0x32,
			0x22, 0x23, 0x2E, 0x2D,
			0x21, 0x20, 0x29, 0x2A,

			0x3F, 0x38, 0x37, 0x34,
			0x3E, 0x39, 0x30, 0x33,
			0x25, 0x24, 0x2F, 0x2C,
			0x26, 0x27, 0x28, 0x2B,
		},
	}

	for order, expected := range cases {
		t.Run(fmt.Sprintf("Case/%d", order), func(t *testing.T) {
			testCurveCase(t, Hilbert3D{order: order}, order, expected)
		})
	}
}

func TestHilbert4D(t *testing.T) {
	for ord := 1; ord <= 4; ord++ {
		t.Run(fmt.Sprintf("Order %d", ord), func(t *testing.T) {
			testCurve(t, Hilbert4D{order: ord})
		})
	}
}

func BenchmarkHilbert(b *testing.B) {
	const O = 10
	for N := 2; N <= 4; N++ {
		b.Run(fmt.Sprintf("%dD/Pos", N), func(b *testing.B) {
			for ord := 1; ord <= O; ord++ {
				b.Run(fmt.Sprintf("Order %d", ord), func(b *testing.B) {
					h := newCurve(ord, N)
					v := make([]int, N)
					for i := range v {
						v[i] = rand.Intn(1 << ord)
					}
					u := make([]int, N)
					for n := 0; n < b.N; n++ {
						copy(u, v)
						h.Pos(u)
					}
				})
			}
		})

		b.Run(fmt.Sprintf("%dD/Coord", N), func(b *testing.B) {
			for ord := 1; ord <= O; ord++ {
				b.Run(fmt.Sprintf("Order %d", ord), func(b *testing.B) {
					h := newCurve(ord, N)
					d := rand.Intn(1 << (ord * N))
					v := make([]int, N)
					for n := 0; n < b.N; n++ {
						h.Coord(v, d)
					}
				})
			}
		})
	}
}

type curve interface {
	Dims() []int
	Len() int
	Pos(v []int) int
	Coord(dst []int, pos int) []int
}

func newCurve(order, dim int) curve {
	switch dim {
	case 2:
		return Hilbert2D{order: order}
	case 3:
		return Hilbert3D{order: order}
	case 4:
		return Hilbert4D{order: order}
	}
	panic("invalid dimension")
}

// testCurve verifies that Pos and Coord (of C) are inverses of each other and
// that the spatial coordinates V and U - corresponding to linear coordinates D
// and D+1 - are exactly one unit (euclidean) distant from each other.
func testCurve(t *testing.T, c curve) {
	t.Helper()

	// Stop if the error count reaches 10
	var errc int
	fail := func() {
		if errc < 10 {
			errc++
			t.Fail()
		} else {
			t.FailNow()
		}
	}

	// Map between linear and spatial coordinates, and verify that Pos and Coord
	// are inverses of each other
	m := map[int][]int{}
	curveRange(c, func(v []int) {
		d := c.Pos(slices.Clone(v))
		u := c.Coord(nil, d)
		if !reflect.DeepEqual(v, u) {
			t.Logf("Space is not the inverse of Curve for d=%d %v", d, v)
			fail()
		}

		m[d] = slices.Clone(v)
	})

	D := 1
	for _, v := range c.Dims() {
		D *= v
	}

	// For each possible pairs of linear coordinates D and D+1, verify that the
	// corresponding spatial coordinates V and U are exactly one unit apart
	// (euclidean distance)
	for d := 0; d < D-1; d++ {
		v, u := m[d], m[d+1]
		if !adjacent(v, u) {
			t.Logf("points %x and %x are not adjacent\n    %v -> %v", d, d+1, v, u)
			fail()
		}
	}
}

// curveRange ranges over the n-dimensional coordinate space of the curve,
// calling fn on each element of the space.
func curveRange(c curve, fn func([]int)) {
	size := c.Dims()
	dimRange(len(size), size, make([]int, len(size)), fn)
}

// dimRange ranges over the coordinate space defined by size, calling fn on each
// element of the space. Call dimRange with dim = len(size).
func dimRange(dim int, size []int, v []int, fn func([]int)) {
	if dim == 0 {
		fn(v)
		return
	}

	for i := 0; i < size[dim-1]; i++ {
		v[dim-1] = i
		dimRange(dim-1, size, v, fn)
	}
}

// adjacent returns true if the euclidean distance between v and u is
// exactly one. v and u must be the same length.
//
// In other words, given d(i) = abs(v[i] - u[i]), adjacent returns false if
// d(i) > 1 for any i or if d(i) == 1 for more than a single i, or if d(i)
// == 0 for all i.
func adjacent(v, u []int) bool {
	n := 0
	for i := range v {
		x := v[i] - u[i]
		if x == 0 {
			continue
		}
		if x < -1 || 1 < x {
			return false
		}
		n++
	}

	return n == 1
}

// testCurveCase verifies that the curve produces the expected sequence of
// values.
func testCurveCase(t *testing.T, c curve, order int, expected []int) {
	t.Helper()

	dim := len(c.Dims())
	actual := make([]int, len(expected))
	for i := range expected {
		v := coord(i, order, dim)
		actual[i] = c.Pos(slices.Clone(v))
	}
	if !reflect.DeepEqual(expected, actual) {
		t.Fatalf("unexpected result:\ngot:  %v\nwant: %v", actual, expected)
	}

	for i, d := range expected {
		v := coord(i, order, dim)
		if !reflect.DeepEqual(v, c.Coord(nil, d)) {
			t.Fatalf("[%d] expected %v for d = %d", i, v, d)
		}
	}
}

// coord returns the nth spatial coordinates for a dim-dimensional space with
// sides 2^ord in row-major order.
func coord(n, ord, dim int) []int {
	v := make([]int, dim)
	for i := 0; i < dim; i++ {
		v[i] = n % (1 << ord)
		n /= (1 << ord)
	}
	return v
}

func noError(t testing.TB, err error) {
	t.Helper()
	if err != nil {
		t.Fatal(err)
	}
}

func errorIs(t testing.TB, err, target error) {
	t.Helper()
	if err == nil {
		t.Fatal("Expected an error")
	}
	if !errors.Is(err, target) {
		t.Fatalf("Expected %v to be %v", err, target)
	}
}