1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package kdtree
import (
"container/heap"
"fmt"
"math"
"sort"
)
// Interface is the set of methods required for construction of efficiently
// searchable k-d trees. A k-d tree may be constructed without using the
// Interface type, but it is likely to have reduced search performance.
type Interface interface {
// Index returns the ith element of the list of points.
Index(i int) Comparable
// Len returns the length of the list.
Len() int
// Pivot partitions the list based on the dimension specified.
Pivot(Dim) int
// Slice returns a slice of the list using zero-based half
// open indexing equivalent to built-in slice indexing.
Slice(start, end int) Interface
}
// Bounder returns a bounding volume containing the list of points. Bounds may return nil.
type Bounder interface {
Bounds() *Bounding
}
type bounder interface {
Interface
Bounder
}
// Dim is an index into a point's coordinates.
type Dim int
// Comparable is the element interface for values stored in a k-d tree.
type Comparable interface {
// Compare returns the signed distance of a from the plane passing through
// b and perpendicular to the dimension d.
//
// Given c = a.Compare(b, d):
// c = a_d - b_d
//
Compare(Comparable, Dim) float64
// Dims returns the number of dimensions described in the Comparable.
Dims() int
// Distance returns the squared Euclidean distance between the receiver and
// the parameter.
Distance(Comparable) float64
}
// Extender is a Comparable that can increase a bounding volume to include the
// point represented by the Comparable.
type Extender interface {
Comparable
// Extend returns a bounding box that has been extended to include the
// receiver. Extend may return nil.
Extend(*Bounding) *Bounding
}
// Bounding represents a volume bounding box.
type Bounding struct {
Min, Max Comparable
}
// Contains returns whether c is within the volume of the Bounding. A nil Bounding
// returns true.
func (b *Bounding) Contains(c Comparable) bool {
if b == nil {
return true
}
for d := Dim(0); d < Dim(c.Dims()); d++ {
if c.Compare(b.Min, d) < 0 || 0 < c.Compare(b.Max, d) {
return false
}
}
return true
}
// Node holds a single point value in a k-d tree.
type Node struct {
Point Comparable
Plane Dim
Left, Right *Node
*Bounding
}
func (n *Node) String() string {
if n == nil {
return "<nil>"
}
return fmt.Sprintf("%.3f %d", n.Point, n.Plane)
}
// Tree implements a k-d tree creation and nearest neighbor search.
type Tree struct {
Root *Node
Count int
}
// New returns a k-d tree constructed from the values in p. If p is a Bounder and
// bounding is true, bounds are determined for each node.
// The ordering of elements in p may be altered after New returns.
func New(p Interface, bounding bool) *Tree {
if p, ok := p.(bounder); ok && bounding {
return &Tree{
Root: buildBounded(p, 0, bounding),
Count: p.Len(),
}
}
return &Tree{
Root: build(p, 0),
Count: p.Len(),
}
}
func build(p Interface, plane Dim) *Node {
if p.Len() == 0 {
return nil
}
piv := p.Pivot(plane)
d := p.Index(piv)
np := (plane + 1) % Dim(d.Dims())
return &Node{
Point: d,
Plane: plane,
Left: build(p.Slice(0, piv), np),
Right: build(p.Slice(piv+1, p.Len()), np),
Bounding: nil,
}
}
func buildBounded(p bounder, plane Dim, bounding bool) *Node {
if p.Len() == 0 {
return nil
}
piv := p.Pivot(plane)
d := p.Index(piv)
np := (plane + 1) % Dim(d.Dims())
b := p.Bounds()
return &Node{
Point: d,
Plane: plane,
Left: buildBounded(p.Slice(0, piv).(bounder), np, bounding),
Right: buildBounded(p.Slice(piv+1, p.Len()).(bounder), np, bounding),
Bounding: b,
}
}
// Insert adds a point to the tree, updating the bounding volumes if bounding is
// true, and the tree is empty or the tree already has bounding volumes stored,
// and c is an Extender. No rebalancing of the tree is performed.
func (t *Tree) Insert(c Comparable, bounding bool) {
t.Count++
if t.Root != nil {
bounding = t.Root.Bounding != nil
}
if c, ok := c.(Extender); ok && bounding {
t.Root = t.Root.insertBounded(c, 0, bounding)
return
} else if !ok && t.Root != nil {
// If we are not rebounding, mark the tree as non-bounded.
t.Root.Bounding = nil
}
t.Root = t.Root.insert(c, 0)
}
func (n *Node) insert(c Comparable, d Dim) *Node {
if n == nil {
return &Node{
Point: c,
Plane: d,
Bounding: nil,
}
}
d = (n.Plane + 1) % Dim(c.Dims())
if c.Compare(n.Point, n.Plane) <= 0 {
n.Left = n.Left.insert(c, d)
} else {
n.Right = n.Right.insert(c, d)
}
return n
}
func (n *Node) insertBounded(c Extender, d Dim, bounding bool) *Node {
if n == nil {
var b *Bounding
if bounding {
b = c.Extend(b)
}
return &Node{
Point: c,
Plane: d,
Bounding: b,
}
}
if bounding {
n.Bounding = c.Extend(n.Bounding)
}
d = (n.Plane + 1) % Dim(c.Dims())
if c.Compare(n.Point, n.Plane) <= 0 {
n.Left = n.Left.insertBounded(c, d, bounding)
} else {
n.Right = n.Right.insertBounded(c, d, bounding)
}
return n
}
// Len returns the number of elements in the tree.
func (t *Tree) Len() int { return t.Count }
// Contains returns whether a Comparable is in the bounds of the tree. If no bounding has
// been constructed Contains returns true.
func (t *Tree) Contains(c Comparable) bool {
if t.Root.Bounding == nil {
return true
}
return t.Root.Contains(c)
}
var inf = math.Inf(1)
// Nearest returns the nearest value to the query and the distance between them.
func (t *Tree) Nearest(q Comparable) (Comparable, float64) {
if t.Root == nil {
return nil, inf
}
n, dist := t.Root.search(q, inf)
if n == nil {
return nil, inf
}
return n.Point, dist
}
func (n *Node) search(q Comparable, dist float64) (*Node, float64) {
if n == nil {
return nil, inf
}
c := q.Compare(n.Point, n.Plane)
dist = math.Min(dist, q.Distance(n.Point))
bn := n
if c <= 0 {
ln, ld := n.Left.search(q, dist)
if ld < dist {
bn, dist = ln, ld
}
if c*c < dist {
rn, rd := n.Right.search(q, dist)
if rd < dist {
bn, dist = rn, rd
}
}
return bn, dist
}
rn, rd := n.Right.search(q, dist)
if rd < dist {
bn, dist = rn, rd
}
if c*c < dist {
ln, ld := n.Left.search(q, dist)
if ld < dist {
bn, dist = ln, ld
}
}
return bn, dist
}
// ComparableDist holds a Comparable and a distance to a specific query. A nil Comparable
// is used to mark the end of the heap, so clients should not store nil values except for
// this purpose.
type ComparableDist struct {
Comparable Comparable
Dist float64
}
// Heap is a max heap sorted on Dist.
type Heap []ComparableDist
func (h *Heap) Max() ComparableDist { return (*h)[0] }
func (h *Heap) Len() int { return len(*h) }
func (h *Heap) Less(i, j int) bool { return (*h)[i].Comparable == nil || (*h)[i].Dist > (*h)[j].Dist }
func (h *Heap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] }
func (h *Heap) Push(x interface{}) { (*h) = append(*h, x.(ComparableDist)) }
func (h *Heap) Pop() (i interface{}) { i, *h = (*h)[len(*h)-1], (*h)[:len(*h)-1]; return i }
// NKeeper is a Keeper that retains the n best ComparableDists that have been passed to Keep.
type NKeeper struct {
Heap
}
// NewNKeeper returns an NKeeper with the max value of the heap set to infinite distance. The
// returned NKeeper is able to retain at most n values.
func NewNKeeper(n int) *NKeeper {
k := NKeeper{make(Heap, 1, n)}
k.Heap[0].Dist = inf
return &k
}
// Keep adds c to the heap if its distance is less than the maximum value of the heap. If adding
// c would increase the size of the heap beyond the initial maximum length, the maximum value of
// the heap is dropped.
func (k *NKeeper) Keep(c ComparableDist) {
if c.Dist <= k.Heap[0].Dist { // Favour later finds to displace sentinel.
if len(k.Heap) == cap(k.Heap) {
// Changing the value of the element at index 0 and then calling Fix is equivalent to,
// but less expensive than, calling Pop() followed by a Push of the new value.
k.Heap[0] = c
heap.Fix(k, 0)
} else {
heap.Push(k, c)
}
}
}
// DistKeeper is a Keeper that retains the ComparableDists within the specified distance of the
// query that it is called to Keep.
type DistKeeper struct {
Heap
}
// NewDistKeeper returns an DistKeeper with the maximum value of the heap set to d.
func NewDistKeeper(d float64) *DistKeeper { return &DistKeeper{Heap{{Dist: d}}} }
// Keep adds c to the heap if its distance is less than or equal to the max value of the heap.
func (k *DistKeeper) Keep(c ComparableDist) {
if c.Dist <= k.Heap[0].Dist {
heap.Push(k, c)
}
}
// Keeper implements a conditional max heap sorted on the Dist field of the ComparableDist type.
// kd search is guided by the distance stored in the max value of the heap.
type Keeper interface {
Keep(ComparableDist) // Keep conditionally pushes the provided ComparableDist onto the heap.
Max() ComparableDist // Max returns the maximum element of the Keeper.
heap.Interface
}
// NearestSet finds the nearest values to the query accepted by the provided Keeper, k.
// k must be able to return a ComparableDist specifying the maximum acceptable distance
// when Max() is called, and retains the results of the search in min sorted order after
// the call to NearestSet returns.
// If a sentinel ComparableDist with a nil Comparable is used by the Keeper to mark the
// maximum distance, NearestSet will remove it before returning.
func (t *Tree) NearestSet(k Keeper, q Comparable) {
if t.Root == nil {
return
}
t.Root.searchSet(q, k)
// Check whether we have retained a sentinel
// and flag removal if we have.
removeSentinel := k.Len() != 0 && k.Max().Comparable == nil
sort.Sort(sort.Reverse(k))
// This abuses the interface to drop the max.
// It is reasonable to do this because we know
// that the maximum value will now be at element
// zero, which is removed by the Pop method.
if removeSentinel {
k.Pop()
}
}
func (n *Node) searchSet(q Comparable, k Keeper) {
if n == nil {
return
}
c := q.Compare(n.Point, n.Plane)
k.Keep(ComparableDist{Comparable: n.Point, Dist: q.Distance(n.Point)})
if c <= 0 {
n.Left.searchSet(q, k)
if c*c <= k.Max().Dist {
n.Right.searchSet(q, k)
}
return
}
n.Right.searchSet(q, k)
if c*c <= k.Max().Dist {
n.Left.searchSet(q, k)
}
}
// Operation is a function that operates on a Comparable. The bounding volume and tree depth
// of the point is also provided. If done is returned true, the Operation is indicating that no
// further work needs to be done and so the Do function should traverse no further.
type Operation func(Comparable, *Bounding, int) (done bool)
// Do performs fn on all values stored in the tree. A boolean is returned indicating whether the
// Do traversal was interrupted by an Operation returning true. If fn alters stored values' sort
// relationships, future tree operation behaviors are undefined.
func (t *Tree) Do(fn Operation) bool {
if t.Root == nil {
return false
}
return t.Root.do(fn, 0)
}
func (n *Node) do(fn Operation, depth int) (done bool) {
if n.Left != nil {
done = n.Left.do(fn, depth+1)
if done {
return
}
}
done = fn(n.Point, n.Bounding, depth)
if done {
return
}
if n.Right != nil {
done = n.Right.do(fn, depth+1)
}
return
}
// DoBounded performs fn on all values stored in the tree that are within the specified bound.
// If b is nil, the result is the same as a Do. A boolean is returned indicating whether the
// DoBounded traversal was interrupted by an Operation returning true. If fn alters stored
// values' sort relationships future tree operation behaviors are undefined.
func (t *Tree) DoBounded(b *Bounding, fn Operation) bool {
if t.Root == nil {
return false
}
if b == nil {
return t.Root.do(fn, 0)
}
return t.Root.doBounded(fn, b, 0)
}
func (n *Node) doBounded(fn Operation, b *Bounding, depth int) (done bool) {
if n.Left != nil && b.Min.Compare(n.Point, n.Plane) < 0 {
done = n.Left.doBounded(fn, b, depth+1)
if done {
return
}
}
if b.Contains(n.Point) {
done = fn(n.Point, n.Bounding, depth)
if done {
return
}
}
if n.Right != nil && 0 < b.Max.Compare(n.Point, n.Plane) {
done = n.Right.doBounded(fn, b, depth+1)
}
return
}
|