1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// Copyright ©2022 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r2
import (
"testing"
"golang.org/x/exp/rand"
)
func TestBoxContains(t *testing.T) {
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 200; i++ {
b := randomBox(rnd)
for j := 0; j < 10; j++ {
contained := b.random(rnd)
if !b.Contains(contained) {
t.Error("bounding box should contain Vec")
}
}
uncontained := [4]Vec{
Add(b.Max, Vec{1, 0}),
Add(b.Max, Vec{0, 1}),
Sub(b.Min, Vec{1, 0}),
Sub(b.Min, Vec{0, 1}),
}
for _, unc := range uncontained {
if b.Contains(unc) {
t.Error("box should not contain vec")
}
}
}
}
func TestBoxUnion(t *testing.T) {
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 200; i++ {
b1 := randomBox(rnd)
b2 := randomBox(rnd)
u := b1.Union(b2)
for j := 0; j < 10; j++ {
contained := b1.random(rnd)
if !u.Contains(contained) {
t.Error("union should contain b1's Vec")
}
contained = b2.random(rnd)
if !u.Contains(contained) {
t.Error("union should contain b2's Vec")
}
}
uncontained := [4]Vec{
Add(maxElem(b1.Max, b2.Max), Vec{1, 0}),
Add(maxElem(b1.Max, b2.Max), Vec{0, 1}),
Sub(minElem(b1.Min, b2.Min), Vec{1, 0}),
Sub(minElem(b1.Min, b2.Min), Vec{0, 1}),
}
for _, unc := range uncontained {
if !b1.Contains(unc) && !b2.Contains(unc) && u.Contains(unc) {
t.Error("union should not contain Vec")
}
}
}
}
func TestBoxCenter(t *testing.T) {
const tol = 1e-11
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 300; i++ {
b := randomBox(rnd)
center := b.Center()
size := b.Size()
newBox := centeredBox(center, size)
if b.Empty() {
t.Fatal("random box result must be well formed")
}
if !vecApproxEqual(b.Min, newBox.Min, tol) {
t.Errorf("min values of box not equal. got %g, expected %g", newBox.Min, b.Min)
}
if !vecApproxEqual(b.Max, newBox.Max, tol) {
t.Errorf("max values of box not equal. got %g, expected %g", newBox.Max, b.Max)
}
}
}
func TestBoxAdd(t *testing.T) {
const tol = 1e-14
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 12; i++ {
b := randomBox(rnd)
v := randomVec(rnd)
got := b.Add(v)
want := Box{Min: Add(b.Min, v), Max: Add(b.Max, v)}
if !vecApproxEqual(got.Min, want.Min, tol) {
t.Error("box min incorrect result")
}
if !vecApproxEqual(got.Max, want.Max, tol) {
t.Error("box max incorrect result")
}
}
}
func TestBoxScale(t *testing.T) {
const tol = 1e-11
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 300; i++ {
b := randomBox(rnd)
size := b.Size()
scaler := absElem(randomVec(rnd))
scaled := b.Scale(scaler)
gotScaler := divElem(scaled.Size(), size)
if !vecApproxEqual(scaler, gotScaler, tol) {
t.Errorf("got scaled %g, expected %g", gotScaler, scaler)
}
center := b.Center()
scaledCenter := scaled.Center()
if !vecApproxEqual(center, scaledCenter, tol) {
t.Error("scale modified center")
}
}
}
func TestBoxEmpty(t *testing.T) {
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 300; i++ {
v := absElem(randomVec(rnd))
b := randomBox(rnd)
min := b.Min
max := b.Max
if !(Box{Min: min, Max: min}).Empty() {
t.Error("Box{min,min} should be empty")
}
if !(Box{Min: max, Max: max}).Empty() {
t.Error("Box{max,max} should be empty")
}
bmm := Box{Min: min, Max: Sub(min, v)}
if !bmm.Empty() {
t.Error("Box{min,min-v} should be empty")
} else if bmm.Canon().Empty() {
t.Error("Canonical box of Box{min,min-v} is not empty")
}
bMM := Box{Min: Add(max, v), Max: max}
if !bMM.Empty() {
t.Error("Box{max+v,max} should be empty")
} else if bmm.Canon().Empty() {
t.Error("Canonical box of Box{max+v,max} is not empty")
}
}
}
func TestBoxCanon(t *testing.T) {
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 300; i++ {
b := randomBox(rnd)
badBox := Box{Min: b.Max, Max: b.Min}
canon := badBox.Canon()
if canon != b {
t.Error("swapped box canon should be equal to original box")
}
}
}
func TestBoxVertices(t *testing.T) {
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 300; i++ {
b := randomBox(rnd)
gots := b.Vertices()
wants := goldenVertices(b)
if len(gots) != len(wants) {
t.Fatalf("bad length of vertices. expect 4, got %d", len(gots))
}
for j, want := range wants {
got := gots[j]
if !vecEqual(want, got) {
t.Errorf("%dth vertex not equal", j)
}
}
}
}
// randomBox returns a random valid bounding Box.
func randomBox(rnd *rand.Rand) Box {
spatialScale := randomRange(0, 2000)
boxScale := randomRange(0.01, 1000)
return centeredBox(Scale(spatialScale, randomVec(rnd)), Scale(boxScale, absElem(randomVec(rnd))))
}
// Random returns a random point within the Box.
// used to facilitate testing
func (b Box) random(rnd *rand.Rand) Vec {
return Vec{
X: randomRange(b.Min.X, b.Max.X),
Y: randomRange(b.Min.Y, b.Max.Y),
}
}
// randomRange returns a random float64 [a,b)
func randomRange(a, b float64) float64 {
return a + (b-a)*rand.Float64()
}
func goldenVertices(a Box) []Vec {
return []Vec{
0: a.Min,
1: {a.Max.X, a.Min.Y},
2: a.Max,
3: {a.Min.X, a.Max.Y},
}
}
|