1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r2
import "math"
// Vec is a 2D vector.
type Vec struct {
X, Y float64
}
// Add returns the vector sum of p and q.
func Add(p, q Vec) Vec {
return Vec{
X: p.X + q.X,
Y: p.Y + q.Y,
}
}
// Sub returns the vector sum of p and -q.
func Sub(p, q Vec) Vec {
return Vec{
X: p.X - q.X,
Y: p.Y - q.Y,
}
}
// Scale returns the vector p scaled by f.
func Scale(f float64, p Vec) Vec {
return Vec{
X: f * p.X,
Y: f * p.Y,
}
}
// Dot returns the dot product p·q.
func Dot(p, q Vec) float64 {
return p.X*q.X + p.Y*q.Y
}
// Cross returns the cross product p×q.
func Cross(p, q Vec) float64 {
return p.X*q.Y - p.Y*q.X
}
// Rotate returns a new vector, rotated by alpha around the provided point, q.
func Rotate(p Vec, alpha float64, q Vec) Vec {
return NewRotation(alpha, q).Rotate(p)
}
// Norm returns the Euclidean norm of p
//
// |p| = sqrt(p_x^2 + p_y^2).
func Norm(p Vec) float64 {
return math.Hypot(p.X, p.Y)
}
// Norm2 returns the Euclidean squared norm of p
//
// |p|^2 = p_x^2 + p_y^2.
func Norm2(p Vec) float64 {
return p.X*p.X + p.Y*p.Y
}
// Unit returns the unit vector colinear to p.
// Unit returns {NaN,NaN} for the zero vector.
func Unit(p Vec) Vec {
if p.X == 0 && p.Y == 0 {
return Vec{X: math.NaN(), Y: math.NaN()}
}
return Scale(1/Norm(p), p)
}
// Cos returns the cosine of the opening angle between p and q.
func Cos(p, q Vec) float64 {
return Dot(p, q) / (Norm(p) * Norm(q))
}
// Rotation describes a rotation in 2D.
type Rotation struct {
sin, cos float64
p Vec
}
// NewRotation creates a rotation by alpha, around p.
func NewRotation(alpha float64, p Vec) Rotation {
if alpha == 0 {
return Rotation{sin: 0, cos: 1, p: p}
}
sin, cos := math.Sincos(alpha)
return Rotation{sin: sin, cos: cos, p: p}
}
// Rotate returns p rotated according to the parameters used to construct
// the receiver.
func (r Rotation) Rotate(p Vec) Vec {
if r.isIdentity() {
return p
}
o := Sub(p, r.p)
return Add(Vec{
X: (o.X*r.cos - o.Y*r.sin),
Y: (o.X*r.sin + o.Y*r.cos),
}, r.p)
}
func (r Rotation) isIdentity() bool {
return r.sin == 0 && r.cos == 1
}
// minElem returns a vector with the element-wise
// minimum components of vectors a and b.
func minElem(a, b Vec) Vec {
return Vec{
X: math.Min(a.X, b.X),
Y: math.Min(a.Y, b.Y),
}
}
// maxElem returns a vector with the element-wise
// maximum components of vectors a and b.
func maxElem(a, b Vec) Vec {
return Vec{
X: math.Max(a.X, b.X),
Y: math.Max(a.Y, b.Y),
}
}
// absElem returns the vector with components set to their absolute value.
func absElem(a Vec) Vec {
return Vec{
X: math.Abs(a.X),
Y: math.Abs(a.Y),
}
}
// mulElem returns the Hadamard product between vectors a and b.
//
// v = {a.X*b.X, a.Y*b.Y, a.Z*b.Z}
func mulElem(a, b Vec) Vec {
return Vec{
X: a.X * b.X,
Y: a.Y * b.Y,
}
}
// divElem returns the Hadamard product between vector a
// and the inverse components of vector b.
//
// v = {a.X/b.X, a.Y/b.Y, a.Z/b.Z}
func divElem(a, b Vec) Vec {
return Vec{
X: a.X / b.X,
Y: a.Y / b.Y,
}
}
|