1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r3
import "gonum.org/v1/gonum/mat"
// Mat represents a 3×3 matrix. Useful for rotation matrices and such.
// The zero value is usable as the 3×3 zero matrix.
type Mat struct {
data *array
}
var _ mat.Matrix = (*Mat)(nil)
// NewMat returns a new 3×3 matrix Mat type and populates its elements
// with values passed as argument in row-major form. If val argument
// is nil then NewMat returns a matrix filled with zeros.
func NewMat(val []float64) *Mat {
if len(val) == 9 {
return &Mat{arrayFrom(val)}
}
if val == nil {
return &Mat{new(array)}
}
panic(mat.ErrShape)
}
// Dims returns the number of rows and columns of this matrix.
// This method will always return 3×3 for a Mat.
func (m *Mat) Dims() (r, c int) { return 3, 3 }
// T returns the transpose of Mat. Changes in the receiver will be reflected in the returned matrix.
func (m *Mat) T() mat.Matrix { return mat.Transpose{Matrix: m} }
// Scale multiplies the elements of a by f, placing the result in the receiver.
//
// See the mat.Scaler interface for more information.
func (m *Mat) Scale(f float64, a mat.Matrix) {
r, c := a.Dims()
if r != 3 || c != 3 {
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
for i := 0; i < 3; i++ {
for j := 0; j < 3; j++ {
m.Set(i, j, f*a.At(i, j))
}
}
}
// MulVec returns the matrix-vector product M⋅v.
func (m *Mat) MulVec(v Vec) Vec {
if m.data == nil {
return Vec{}
}
return Vec{
X: v.X*m.At(0, 0) + v.Y*m.At(0, 1) + v.Z*m.At(0, 2),
Y: v.X*m.At(1, 0) + v.Y*m.At(1, 1) + v.Z*m.At(1, 2),
Z: v.X*m.At(2, 0) + v.Y*m.At(2, 1) + v.Z*m.At(2, 2),
}
}
// MulVecTrans returns the matrix-vector product Mᵀ⋅v.
func (m *Mat) MulVecTrans(v Vec) Vec {
if m.data == nil {
return Vec{}
}
return Vec{
X: v.X*m.At(0, 0) + v.Y*m.At(1, 0) + v.Z*m.At(2, 0),
Y: v.X*m.At(0, 1) + v.Y*m.At(1, 1) + v.Z*m.At(2, 1),
Z: v.X*m.At(0, 2) + v.Y*m.At(1, 2) + v.Z*m.At(2, 2),
}
}
// CloneFrom makes a copy of a into the receiver m.
// Mat expects a 3×3 input matrix.
func (m *Mat) CloneFrom(a mat.Matrix) {
r, c := a.Dims()
if r != 3 || c != 3 {
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
for i := 0; i < 3; i++ {
for j := 0; j < 3; j++ {
m.Set(i, j, a.At(i, j))
}
}
}
// Sub subtracts the matrix b from a, placing the result in the receiver.
// Sub will panic if the two matrices do not have the same shape.
func (m *Mat) Sub(a, b mat.Matrix) {
if r, c := a.Dims(); r != 3 || c != 3 {
panic(mat.ErrShape)
}
if r, c := b.Dims(); r != 3 || c != 3 {
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
m.Set(0, 0, a.At(0, 0)-b.At(0, 0))
m.Set(0, 1, a.At(0, 1)-b.At(0, 1))
m.Set(0, 2, a.At(0, 2)-b.At(0, 2))
m.Set(1, 0, a.At(1, 0)-b.At(1, 0))
m.Set(1, 1, a.At(1, 1)-b.At(1, 1))
m.Set(1, 2, a.At(1, 2)-b.At(1, 2))
m.Set(2, 0, a.At(2, 0)-b.At(2, 0))
m.Set(2, 1, a.At(2, 1)-b.At(2, 1))
m.Set(2, 2, a.At(2, 2)-b.At(2, 2))
}
// Add adds a and b element-wise, placing the result in the receiver. Add will panic if the two matrices do not have the same shape.
func (m *Mat) Add(a, b mat.Matrix) {
if r, c := a.Dims(); r != 3 || c != 3 {
panic(mat.ErrShape)
}
if r, c := b.Dims(); r != 3 || c != 3 {
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
m.Set(0, 0, a.At(0, 0)+b.At(0, 0))
m.Set(0, 1, a.At(0, 1)+b.At(0, 1))
m.Set(0, 2, a.At(0, 2)+b.At(0, 2))
m.Set(1, 0, a.At(1, 0)+b.At(1, 0))
m.Set(1, 1, a.At(1, 1)+b.At(1, 1))
m.Set(1, 2, a.At(1, 2)+b.At(1, 2))
m.Set(2, 0, a.At(2, 0)+b.At(2, 0))
m.Set(2, 1, a.At(2, 1)+b.At(2, 1))
m.Set(2, 2, a.At(2, 2)+b.At(2, 2))
}
// VecRow returns the elements in the ith row of the receiver.
func (m *Mat) VecRow(i int) Vec {
if i > 2 {
panic(mat.ErrRowAccess)
}
if m.data == nil {
return Vec{}
}
return Vec{X: m.At(i, 0), Y: m.At(i, 1), Z: m.At(i, 2)}
}
// VecCol returns the elements in the jth column of the receiver.
func (m *Mat) VecCol(j int) Vec {
if j > 2 {
panic(mat.ErrColAccess)
}
if m.data == nil {
return Vec{}
}
return Vec{X: m.At(0, j), Y: m.At(1, j), Z: m.At(2, j)}
}
// Outer calculates the outer product of the vectors x and y,
// where x and y are treated as column vectors, and stores the result in the receiver.
//
// m = alpha * x * yᵀ
func (m *Mat) Outer(alpha float64, x, y Vec) {
ax := alpha * x.X
ay := alpha * x.Y
az := alpha * x.Z
m.Set(0, 0, ax*y.X)
m.Set(0, 1, ax*y.Y)
m.Set(0, 2, ax*y.Z)
m.Set(1, 0, ay*y.X)
m.Set(1, 1, ay*y.Y)
m.Set(1, 2, ay*y.Z)
m.Set(2, 0, az*y.X)
m.Set(2, 1, az*y.Y)
m.Set(2, 2, az*y.Z)
}
// Det calculates the determinant of the receiver using the following formula
//
// ⎡a b c⎤
// m = ⎢d e f⎥
// ⎣g h i⎦
// det(m) = a(ei − fh) − b(di − fg) + c(dh − eg)
func (m *Mat) Det() float64 {
a := m.At(0, 0)
b := m.At(0, 1)
c := m.At(0, 2)
deta := m.At(1, 1)*m.At(2, 2) - m.At(1, 2)*m.At(2, 1)
detb := m.At(1, 0)*m.At(2, 2) - m.At(1, 2)*m.At(2, 0)
detc := m.At(1, 0)*m.At(2, 1) - m.At(1, 1)*m.At(2, 0)
return a*deta - b*detb + c*detc
}
// Skew sets the receiver to the 3×3 skew symmetric matrix
// (right hand system) of v.
//
// ⎡ 0 -z y⎤
// Skew({x,y,z}) = ⎢ z 0 -x⎥
// ⎣-y x 0⎦
func (m *Mat) Skew(v Vec) {
m.Set(0, 0, 0)
m.Set(0, 1, -v.Z)
m.Set(0, 2, v.Y)
m.Set(1, 0, v.Z)
m.Set(1, 1, 0)
m.Set(1, 2, -v.X)
m.Set(2, 0, -v.Y)
m.Set(2, 1, v.X)
m.Set(2, 2, 0)
}
// Hessian sets the receiver to the Hessian matrix of the scalar field at the point p,
// approximated using finite differences with the given step sizes.
// The field is evaluated at points in the area surrounding p by adding
// at most 2 components of step to p. Hessian expects the field's second partial
// derivatives are all continuous for correct results.
func (m *Mat) Hessian(p, step Vec, field func(Vec) float64) {
dx := Vec{X: step.X}
dy := Vec{Y: step.Y}
dz := Vec{Z: step.Z}
fp := field(p)
fxp := field(Add(p, dx))
fxm := field(Sub(p, dx))
fxx := (fxp - 2*fp + fxm) / (step.X * step.X)
fyp := field(Add(p, dy))
fym := field(Sub(p, dy))
fyy := (fyp - 2*fp + fym) / (step.Y * step.Y)
aux := Add(dx, dy)
fxyp := field(Add(p, aux))
fxym := field(Sub(p, aux))
fxy := (fxyp - fxp - fyp + 2*fp - fxm - fym + fxym) / (2 * step.X * step.Y)
fzp := field(Add(p, dz))
fzm := field(Sub(p, dz))
fzz := (fzp - 2*fp + fzm) / (step.Z * step.Z)
aux = Add(dx, dz)
fxzp := field(Add(p, aux))
fxzm := field(Sub(p, aux))
fxz := (fxzp - fxp - fzp + 2*fp - fxm - fzm + fxzm) / (2 * step.X * step.Z)
aux = Add(dy, dz)
fyzp := field(Add(p, aux))
fyzm := field(Sub(p, aux))
fyz := (fyzp - fyp - fzp + 2*fp - fym - fzm + fyzm) / (2 * step.Y * step.Z)
m.Set(0, 0, fxx)
m.Set(0, 1, fxy)
m.Set(0, 2, fxz)
m.Set(1, 0, fxy)
m.Set(1, 1, fyy)
m.Set(1, 2, fyz)
m.Set(2, 0, fxz)
m.Set(2, 1, fyz)
m.Set(2, 2, fzz)
}
// Jacobian sets the receiver to the Jacobian matrix of the vector field at
// the point p, approximated using finite differences with the given step sizes.
//
// The Jacobian matrix J is the matrix of all first-order partial derivatives of f.
// If f maps an 3-dimensional vector x to an 3-dimensional vector y = f(x), J is
// a 3×3 matrix whose elements are given as
//
// J_{i,j} = ∂f_i/∂x_j,
//
// or expanded out
//
// [ ∂f_1/∂x_1 ∂f_1/∂x_2 ∂f_1/∂x_3 ]
// J = [ ∂f_2/∂x_1 ∂f_2/∂x_2 ∂f_2/∂x_3 ]
// [ ∂f_3/∂x_1 ∂f_3/∂x_2 ∂f_3/∂x_3 ]
//
// Jacobian expects the field's first order partial derivatives are all
// continuous for correct results.
func (m *Mat) Jacobian(p, step Vec, field func(Vec) Vec) {
dx := Vec{X: step.X}
dy := Vec{Y: step.Y}
dz := Vec{Z: step.Z}
dfdx := Scale(0.5/step.X, Sub(field(Add(p, dx)), field(Sub(p, dx))))
dfdy := Scale(0.5/step.Y, Sub(field(Add(p, dy)), field(Sub(p, dy))))
dfdz := Scale(0.5/step.Z, Sub(field(Add(p, dz)), field(Sub(p, dz))))
m.Set(0, 0, dfdx.X)
m.Set(0, 1, dfdy.X)
m.Set(0, 2, dfdz.X)
m.Set(1, 0, dfdx.Y)
m.Set(1, 1, dfdy.Y)
m.Set(1, 2, dfdz.Y)
m.Set(2, 0, dfdx.Z)
m.Set(2, 1, dfdy.Z)
m.Set(2, 2, dfdz.Z)
}
|