1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vptree
import (
"container/heap"
"errors"
"math"
"sort"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat"
)
// Comparable is the element interface for values stored in a vp-tree.
type Comparable interface {
// Distance returns the distance between the receiver and the
// parameter. The returned distance must satisfy the properties
// of distances in a metric space.
//
// - a.Distance(a) == 0
// - a.Distance(b) >= 0
// - a.Distance(b) == b.Distance(a)
// - a.Distance(b) <= a.Distance(c)+c.Distance(b)
//
Distance(Comparable) float64
}
// Point represents a point in a Euclidean k-d space that satisfies the Comparable
// interface.
type Point []float64
// Distance returns the Euclidean distance between c and the receiver. The concrete
// type of c must be Point.
func (p Point) Distance(c Comparable) float64 {
q := c.(Point)
var sum float64
for dim, c := range p {
d := c - q[dim]
sum += d * d
}
return math.Sqrt(sum)
}
// Node holds a single point value in a vantage point tree.
type Node struct {
Point Comparable
Radius float64
Closer *Node
Further *Node
}
// Tree implements a vantage point tree creation and nearest neighbor search.
type Tree struct {
Root *Node
Count int
}
// New returns a vantage point tree constructed from the values in p. The effort
// parameter specifies how much work should be put into optimizing the choice of
// vantage point. If effort is one or less, random vantage points are chosen.
// The order of elements in p will be altered after New returns. The src parameter
// provides the source of randomness for vantage point selection. If src is nil
// global rand package functions are used. Points in p must not be infinitely
// distant.
func New(p []Comparable, effort int, src rand.Source) (t *Tree, err error) {
var intn func(int) int
var shuf func(n int, swap func(i, j int))
if src == nil {
intn = rand.Intn
shuf = rand.Shuffle
} else {
rnd := rand.New(src)
intn = rnd.Intn
shuf = rnd.Shuffle
}
b := builder{work: make([]float64, len(p)), intn: intn, shuf: shuf}
defer func() {
switch r := recover(); r {
case nil:
case pointAtInfinity:
t = nil
err = pointAtInfinity
default:
panic(r)
}
}()
t = &Tree{
Root: b.build(p, effort),
Count: len(p),
}
return t, nil
}
var pointAtInfinity = errors.New("vptree: point at infinity")
// builder performs vp-tree construction as described for the simple vp-tree
// algorithm in http://pnylab.com/papers/vptree/vptree.pdf.
type builder struct {
work []float64
intn func(n int) int
shuf func(n int, swap func(i, j int))
}
func (b *builder) build(s []Comparable, effort int) *Node {
if len(s) <= 1 {
if len(s) == 0 {
return nil
}
return &Node{Point: s[0]}
}
n := Node{Point: b.selectVantage(s, effort)}
radius, closer, further := b.partition(n.Point, s)
n.Radius = radius
n.Closer = b.build(closer, effort)
n.Further = b.build(further, effort)
return &n
}
func (b *builder) selectVantage(s []Comparable, effort int) Comparable {
if effort <= 1 {
return s[b.intn(len(s))]
}
if effort > len(s) {
effort = len(s)
}
var best Comparable
bestVar := -1.0
b.work = b.work[:effort]
choices := b.random(effort, s)
for _, p := range choices {
for i, q := range choices {
d := p.Distance(q)
if math.IsInf(d, 0) {
panic(pointAtInfinity)
}
b.work[i] = d
}
variance := stat.Variance(b.work, nil)
if variance > bestVar {
best, bestVar = p, variance
}
}
if best == nil {
// This should never be reached.
panic("vptree: could not find vantage point")
}
return best
}
func (b *builder) random(n int, s []Comparable) []Comparable {
if n >= len(s) {
n = len(s)
}
b.shuf(len(s), func(i, j int) { s[i], s[j] = s[j], s[i] })
return s[:n]
}
func (b *builder) partition(v Comparable, s []Comparable) (radius float64, closer, further []Comparable) {
b.work = b.work[:len(s)]
for i, p := range s {
d := v.Distance(p)
if math.IsInf(d, 0) {
panic(pointAtInfinity)
}
b.work[i] = d
}
sort.Sort(byDist{dists: b.work, points: s})
// Note that this does not conform exactly to the description
// in the paper which specifies d(p, s) < mu for L; in cases
// where the median element has a lower indexed element with
// the same distance from the vantage point, L will include a
// d(p, s) == mu.
// The additional work required to satisfy the algorithm is
// not worth doing as it has no effect on the correctness or
// performance of the algorithm.
radius = b.work[len(b.work)/2]
if len(b.work) > 1 {
// Remove vantage if it is present.
closer = s[1 : len(b.work)/2]
}
further = s[len(b.work)/2:]
return radius, closer, further
}
type byDist struct {
dists []float64
points []Comparable
}
func (c byDist) Len() int { return len(c.dists) }
func (c byDist) Less(i, j int) bool { return c.dists[i] < c.dists[j] }
func (c byDist) Swap(i, j int) {
c.dists[i], c.dists[j] = c.dists[j], c.dists[i]
c.points[i], c.points[j] = c.points[j], c.points[i]
}
// Len returns the number of elements in the tree.
func (t *Tree) Len() int { return t.Count }
var inf = math.Inf(1)
// Nearest returns the nearest value to the query and the distance between them.
func (t *Tree) Nearest(q Comparable) (Comparable, float64) {
if t.Root == nil {
return nil, inf
}
n, dist := t.Root.search(q, inf)
if n == nil {
return nil, inf
}
return n.Point, dist
}
func (n *Node) search(q Comparable, dist float64) (*Node, float64) {
if n == nil {
return nil, inf
}
d := q.Distance(n.Point)
dist = math.Min(dist, d)
bn := n
if d < n.Radius {
cn, cd := n.Closer.search(q, dist)
if cd < dist {
bn, dist = cn, cd
}
if d+dist >= n.Radius {
fn, fd := n.Further.search(q, dist)
if fd < dist {
bn, dist = fn, fd
}
}
} else {
fn, fd := n.Further.search(q, dist)
if fd < dist {
bn, dist = fn, fd
}
if d-dist <= n.Radius {
cn, cd := n.Closer.search(q, dist)
if cd < dist {
bn, dist = cn, cd
}
}
}
return bn, dist
}
// ComparableDist holds a Comparable and a distance to a specific query. A nil Comparable
// is used to mark the end of the heap, so clients should not store nil values except for
// this purpose.
type ComparableDist struct {
Comparable Comparable
Dist float64
}
// Heap is a max heap sorted on Dist.
type Heap []ComparableDist
func (h *Heap) Max() ComparableDist { return (*h)[0] }
func (h *Heap) Len() int { return len(*h) }
func (h *Heap) Less(i, j int) bool { return (*h)[i].Comparable == nil || (*h)[i].Dist > (*h)[j].Dist }
func (h *Heap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] }
func (h *Heap) Push(x interface{}) { (*h) = append(*h, x.(ComparableDist)) }
func (h *Heap) Pop() (i interface{}) { i, *h = (*h)[len(*h)-1], (*h)[:len(*h)-1]; return i }
// NKeeper is a Keeper that retains the n best ComparableDists that have been passed to Keep.
type NKeeper struct {
Heap
}
// NewNKeeper returns an NKeeper with the max value of the heap set to infinite distance. The
// returned NKeeper is able to retain at most n values.
func NewNKeeper(n int) *NKeeper {
k := NKeeper{make(Heap, 1, n)}
k.Heap[0].Dist = inf
return &k
}
// Keep adds c to the heap if its distance is less than the maximum value of the heap. If adding
// c would increase the size of the heap beyond the initial maximum length, the maximum value of
// the heap is dropped.
func (k *NKeeper) Keep(c ComparableDist) {
if c.Dist <= k.Heap[0].Dist { // Favour later finds to displace sentinel.
if len(k.Heap) == cap(k.Heap) {
heap.Pop(k)
}
heap.Push(k, c)
}
}
// DistKeeper is a Keeper that retains the ComparableDists within the specified distance of the
// query that it is called to Keep.
type DistKeeper struct {
Heap
}
// NewDistKeeper returns an DistKeeper with the maximum value of the heap set to d.
func NewDistKeeper(d float64) *DistKeeper { return &DistKeeper{Heap{{Dist: d}}} }
// Keep adds c to the heap if its distance is less than or equal to the max value of the heap.
func (k *DistKeeper) Keep(c ComparableDist) {
if c.Dist <= k.Heap[0].Dist {
heap.Push(k, c)
}
}
// Keeper implements a conditional max heap sorted on the Dist field of the ComparableDist type.
// vantage point search is guided by the distance stored in the max value of the heap.
type Keeper interface {
Keep(ComparableDist) // Keep conditionally pushes the provided ComparableDist onto the heap.
Max() ComparableDist // Max returns the maximum element of the Keeper.
heap.Interface
}
// NearestSet finds the nearest values to the query accepted by the provided Keeper, k.
// k must be able to return a ComparableDist specifying the maximum acceptable distance
// when Max() is called, and retains the results of the search in min sorted order after
// the call to NearestSet returns.
// If a sentinel ComparableDist with a nil Comparable is used by the Keeper to mark the
// maximum distance, NearestSet will remove it before returning.
func (t *Tree) NearestSet(k Keeper, q Comparable) {
if t.Root == nil {
return
}
t.Root.searchSet(q, k)
// Check whether we have retained a sentinel
// and flag removal if we have.
removeSentinel := k.Len() != 0 && k.Max().Comparable == nil
sort.Sort(sort.Reverse(k))
// This abuses the interface to drop the max.
// It is reasonable to do this because we know
// that the maximum value will now be at element
// zero, which is removed by the Pop method.
if removeSentinel {
k.Pop()
}
}
func (n *Node) searchSet(q Comparable, k Keeper) {
if n == nil {
return
}
k.Keep(ComparableDist{Comparable: n.Point, Dist: q.Distance(n.Point)})
d := q.Distance(n.Point)
if d < n.Radius {
n.Closer.searchSet(q, k)
if d+k.Max().Dist >= n.Radius {
n.Further.searchSet(q, k)
}
} else {
n.Further.searchSet(q, k)
if d-k.Max().Dist <= n.Radius {
n.Closer.searchSet(q, k)
}
}
}
// Operation is a function that operates on a Comparable. The bounding volume and tree depth
// of the point is also provided. If done is returned true, the Operation is indicating that no
// further work needs to be done and so the Do function should traverse no further.
type Operation func(Comparable, int) (done bool)
// Do performs fn on all values stored in the tree. A boolean is returned indicating whether the
// Do traversal was interrupted by an Operation returning true. If fn alters stored values' sort
// relationships, future tree operation behaviors are undefined.
func (t *Tree) Do(fn Operation) bool {
if t.Root == nil {
return false
}
return t.Root.do(fn, 0)
}
func (n *Node) do(fn Operation, depth int) (done bool) {
if n.Closer != nil {
done = n.Closer.do(fn, depth+1)
if done {
return
}
}
done = fn(n.Point, depth)
if done {
return
}
if n.Further != nil {
done = n.Further.do(fn, depth+1)
}
return
}
|