1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package combin
import (
"math"
"sort"
)
const (
errNegInput = "combin: negative input"
badSetSize = "combin: n < k"
badInput = "combin: wrong input slice length"
errNonpositiveDimension = "combin: non-positive dimension"
)
// Binomial returns the binomial coefficient of (n,k), also commonly referred to
// as "n choose k".
//
// The binomial coefficient, C(n,k), is the number of unordered combinations of
// k elements in a set that is n elements big, and is defined as
//
// C(n,k) = n!/((n-k)!k!)
//
// n and k must be non-negative with n >= k, otherwise Binomial will panic.
// No check is made for overflow.
func Binomial(n, k int) int {
if n < 0 || k < 0 {
panic(errNegInput)
}
if n < k {
panic(badSetSize)
}
// (n,k) = (n, n-k)
if k > n/2 {
k = n - k
}
b := 1
for i := 1; i <= k; i++ {
b = (n - k + i) * b / i
}
return b
}
// GeneralizedBinomial returns the generalized binomial coefficient of (n, k),
// defined as
//
// Γ(n+1) / (Γ(k+1) Γ(n-k+1))
//
// where Γ is the Gamma function. GeneralizedBinomial is useful for continuous
// relaxations of the binomial coefficient, or when the binomial coefficient value
// may overflow int. In the latter case, one may use math/big for an exact
// computation.
//
// n and k must be non-negative with n >= k, otherwise GeneralizedBinomial will panic.
func GeneralizedBinomial(n, k float64) float64 {
return math.Exp(LogGeneralizedBinomial(n, k))
}
// LogGeneralizedBinomial returns the log of the generalized binomial coefficient.
// See GeneralizedBinomial for more information.
func LogGeneralizedBinomial(n, k float64) float64 {
if n < 0 || k < 0 {
panic(errNegInput)
}
if n < k {
panic(badSetSize)
}
a, _ := math.Lgamma(n + 1)
b, _ := math.Lgamma(k + 1)
c, _ := math.Lgamma(n - k + 1)
return a - b - c
}
// CombinationGenerator generates combinations iteratively. The Combinations
// function may be called to generate all combinations collectively.
type CombinationGenerator struct {
n int
k int
previous []int
remaining int
}
// NewCombinationGenerator returns a CombinationGenerator for generating the
// combinations of k elements from a set of size n.
//
// n and k must be non-negative with n >= k, otherwise NewCombinationGenerator
// will panic.
func NewCombinationGenerator(n, k int) *CombinationGenerator {
return &CombinationGenerator{
n: n,
k: k,
remaining: Binomial(n, k),
}
}
// Next advances the iterator if there are combinations remaining to be generated,
// and returns false if all combinations have been generated. Next must be called
// to initialize the first value before calling Combination or Combination will
// panic. The value returned by Combination is only changed during calls to Next.
func (c *CombinationGenerator) Next() bool {
if c.remaining <= 0 {
// Next is called before combination, so c.remaining is set to zero before
// Combination is called. Thus, Combination cannot panic on zero, and a
// second sentinel value is needed.
c.remaining = -1
return false
}
if c.previous == nil {
c.previous = make([]int, c.k)
for i := range c.previous {
c.previous[i] = i
}
} else {
nextCombination(c.previous, c.n, c.k)
}
c.remaining--
return true
}
// Combination returns the current combination. If dst is non-nil, it must have
// length k and the result will be stored in-place into dst. If dst
// is nil a new slice will be allocated and returned. If all of the combinations
// have already been constructed (Next() returns false), Combination will panic.
//
// Next must be called to initialize the first value before calling Combination
// or Combination will panic. The value returned by Combination is only changed
// during calls to Next.
func (c *CombinationGenerator) Combination(dst []int) []int {
if c.remaining == -1 {
panic("combin: all combinations have been generated")
}
if c.previous == nil {
panic("combin: Combination called before Next")
}
if dst == nil {
dst = make([]int, c.k)
} else if len(dst) != c.k {
panic(badInput)
}
copy(dst, c.previous)
return dst
}
// Combinations generates all of the combinations of k elements from a
// set of size n. The returned slice has length Binomial(n,k) and each inner slice
// has length k.
//
// n and k must be non-negative with n >= k, otherwise Combinations will panic.
//
// CombinationGenerator may alternatively be used to generate the combinations
// iteratively instead of collectively, or IndexToCombination for random access.
func Combinations(n, k int) [][]int {
combins := Binomial(n, k)
data := make([][]int, combins)
if len(data) == 0 {
return data
}
data[0] = make([]int, k)
for i := range data[0] {
data[0][i] = i
}
for i := 1; i < combins; i++ {
next := make([]int, k)
copy(next, data[i-1])
nextCombination(next, n, k)
data[i] = next
}
return data
}
// nextCombination generates the combination after s, overwriting the input value.
func nextCombination(s []int, n, k int) {
for j := k - 1; j >= 0; j-- {
if s[j] == n+j-k {
continue
}
s[j]++
for l := j + 1; l < k; l++ {
s[l] = s[j] + l - j
}
break
}
}
// CombinationIndex returns the index of the given combination.
//
// The functions CombinationIndex and IndexToCombination define a bijection
// between the integers and the Binomial(n, k) number of possible combinations.
// CombinationIndex returns the inverse of IndexToCombination.
//
// CombinationIndex panics if comb is not a sorted combination of the first
// [0,n) integers, if n or k are negative, or if k is greater than n.
func CombinationIndex(comb []int, n, k int) int {
if n < 0 || k < 0 {
panic(errNegInput)
}
if n < k {
panic(badSetSize)
}
if len(comb) != k {
panic("combin: bad length combination")
}
if !sort.IntsAreSorted(comb) {
panic("combin: input combination is not sorted")
}
contains := make(map[int]struct{}, k)
for _, v := range comb {
contains[v] = struct{}{}
}
if len(contains) != k {
panic("combin: comb contains non-unique elements")
}
// This algorithm iterates in reverse lexicograhpic order.
// Flip the index and values to swap the order.
rev := make([]int, k)
for i, v := range comb {
rev[len(comb)-i-1] = n - v - 1
}
idx := 0
for i, v := range rev {
if v >= i+1 {
idx += Binomial(v, i+1)
}
}
return Binomial(n, k) - 1 - idx
}
// IndexToCombination returns the combination corresponding to the given index.
//
// The functions CombinationIndex and IndexToCombination define a bijection
// between the integers and the Binomial(n, k) number of possible combinations.
// IndexToCombination returns the inverse of CombinationIndex (up to the order
// of the elements).
//
// The combination is stored in-place into dst if dst is non-nil, otherwise
// a new slice is allocated and returned.
//
// IndexToCombination panics if n or k are negative, if k is greater than n,
// or if idx is not in [0, Binomial(n,k)-1]. IndexToCombination will also panic
// if dst is non-nil and len(dst) is not k.
func IndexToCombination(dst []int, idx, n, k int) []int {
if idx < 0 || idx >= Binomial(n, k) {
panic("combin: invalid index")
}
if dst == nil {
dst = make([]int, k)
} else if len(dst) != k {
panic(badInput)
}
// The base algorithm indexes in reverse lexicographic order
// flip the values and the index.
idx = Binomial(n, k) - 1 - idx
for i := range dst {
// Find the largest number m such that Binomial(m, k-i) <= idx.
// This is one less than the first number such that it is larger.
m := sort.Search(n, func(m int) bool {
if m < k-i {
return false
}
return Binomial(m, k-i) > idx
})
m--
// Normally this is put m into the last free spot, but we
// reverse the index and the value.
dst[i] = n - m - 1
if m >= k-i {
idx -= Binomial(m, k-i)
}
}
return dst
}
// Cartesian returns the Cartesian product of the slices in data. The Cartesian
// product of two sets is the set of all combinations of the items. For example,
// given the input
//
// []int{2, 3, 1}
//
// the returned matrix will be
//
// [ 0 0 0 ]
// [ 0 1 0 ]
// [ 0 2 0 ]
// [ 1 0 0 ]
// [ 1 1 0 ]
// [ 1 2 0 ]
//
// Cartesian panics if any of the provided lengths are less than 1.
func Cartesian(lens []int) [][]int {
rows := Card(lens)
if rows == 0 {
panic("combin: empty lengths")
}
out := make([][]int, rows)
for i := 0; i < rows; i++ {
out[i] = SubFor(nil, i, lens)
}
return out
}
// Card computes the cardinality of the multi-dimensional space whose dimensions have size specified by dims
// All length values must be positive, otherwise this will panic.
func Card(dims []int) int {
if len(dims) == 0 {
return 0
}
card := 1
for _, v := range dims {
if v < 0 {
panic("combin: length less than zero")
}
card *= v
}
return card
}
// NewCartesianGenerator returns a CartesianGenerator for iterating over Cartesian products which are generated on the fly.
// All values in lens must be positive, otherwise this will panic.
func NewCartesianGenerator(lens []int) *CartesianGenerator {
return &CartesianGenerator{
lens: lens,
rows: Card(lens),
idx: -1,
}
}
// CartesianGenerator iterates over a Cartesian product set.
type CartesianGenerator struct {
lens []int
rows int
idx int
}
// Next moves to the next product of the Cartesian set.
// It returns false if the generator reached the end of the Cartesian set end.
func (g *CartesianGenerator) Next() bool {
if g.idx+1 < g.rows {
g.idx++
return true
}
g.idx = g.rows
return false
}
// Product generates one product of the Cartesian set according to the current index which is increased by Next().
// Next needs to be called at least one time before this method, otherwise it will panic.
func (g *CartesianGenerator) Product(dst []int) []int {
return SubFor(dst, g.idx, g.lens)
}
// IdxFor converts a multi-dimensional index into a linear index for a
// multi-dimensional space. sub specifies the index for each dimension, and dims
// specifies the size of each dimension. IdxFor is the inverse of SubFor.
// IdxFor panics if any of the entries of sub are negative, any of the entries
// of dim are non-positive, or if sub[i] >= dims[i] for any i.
func IdxFor(sub, dims []int) int {
// The index returned is "row-major", that is the last index of sub is
// continuous.
var idx int
stride := 1
for i := len(dims) - 1; i >= 0; i-- {
v := sub[i]
d := dims[i]
if d <= 0 {
panic(errNonpositiveDimension)
}
if v < 0 || v >= d {
panic("combin: invalid subscript")
}
idx += v * stride
stride *= d
}
return idx
}
// SubFor returns the multi-dimensional subscript for the input linear index to
// the multi-dimensional space. dims specifies the size of each dimension, and
// idx specifies the linear index. SubFor is the inverse of IdxFor.
//
// If sub is non-nil the result is stored in-place into sub, and SubFor will panic
// if len(sub) != len(dims). If sub is nil a new slice of the appropriate length
// is allocated. SubFor panics if idx < 0 or if idx is greater than or equal to
// the product of the dimensions.
func SubFor(sub []int, idx int, dims []int) []int {
if sub == nil {
sub = make([]int, len(dims))
}
if len(sub) != len(dims) {
panic(badInput)
}
if idx < 0 {
panic(errNegInput)
}
stride := 1
for i := len(dims) - 1; i >= 1; i-- {
stride *= dims[i]
}
for i := 0; i < len(dims)-1; i++ {
v := idx / stride
d := dims[i]
if d < 0 {
panic(errNonpositiveDimension)
}
if v >= dims[i] {
panic("combin: index too large")
}
sub[i] = v
idx -= v * stride
stride /= dims[i+1]
}
if idx > dims[len(sub)-1] {
panic("combin: index too large")
}
sub[len(sub)-1] = idx
return sub
}
// NumPermutations returns the number of permutations when selecting k
// objects from a set of n objects when the selection order matters.
// No check is made for overflow.
//
// NumPermutations panics if either n or k is negative, or if k is
// greater than n.
func NumPermutations(n, k int) int {
if n < 0 {
panic("combin: n is negative")
}
if k < 0 {
panic("combin: k is negative")
}
if k > n {
panic("combin: k is greater than n")
}
p := 1
for i := n - k + 1; i <= n; i++ {
p *= i
}
return p
}
// Permutations generates all of the permutations of k elements from a
// set of size n. The returned slice has length NumPermutations(n, k)
// and each inner slice has length k.
//
// n and k must be non-negative with n >= k, otherwise Permutations will panic.
//
// PermutationGenerator may alternatively be used to generate the permutations
// iteratively instead of collectively, or IndexToPermutation for random access.
func Permutations(n, k int) [][]int {
nPerms := NumPermutations(n, k)
data := make([][]int, nPerms)
if len(data) == 0 {
return data
}
for i := 0; i < nPerms; i++ {
data[i] = IndexToPermutation(nil, i, n, k)
}
return data
}
// PermutationGenerator generates permutations iteratively. The Permutations
// function may be called to generate all permutations collectively.
type PermutationGenerator struct {
n int
k int
nPerm int
idx int
permutation []int
}
// NewPermutationGenerator returns a PermutationGenerator for generating the
// permutations of k elements from a set of size n.
//
// n and k must be non-negative with n >= k, otherwise NewPermutationGenerator
// will panic.
func NewPermutationGenerator(n, k int) *PermutationGenerator {
return &PermutationGenerator{
n: n,
k: k,
nPerm: NumPermutations(n, k),
idx: -1,
permutation: make([]int, k),
}
}
// Next advances the iterator if there are permutations remaining to be generated,
// and returns false if all permutations have been generated. Next must be called
// to initialize the first value before calling Permutation or Permutation will
// panic. The value returned by Permutation is only changed during calls to Next.
func (p *PermutationGenerator) Next() bool {
if p.idx >= p.nPerm-1 {
p.idx = p.nPerm // so Permutation can panic.
return false
}
p.idx++
IndexToPermutation(p.permutation, p.idx, p.n, p.k)
return true
}
// Permutation returns the current permutation. If dst is non-nil, it must have
// length k and the result will be stored in-place into dst. If dst
// is nil a new slice will be allocated and returned. If all of the permutations
// have already been constructed (Next() returns false), Permutation will panic.
//
// Next must be called to initialize the first value before calling Permutation
// or Permutation will panic. The value returned by Permutation is only changed
// during calls to Next.
func (p *PermutationGenerator) Permutation(dst []int) []int {
if p.idx == p.nPerm {
panic("combin: all permutations have been generated")
}
if p.idx == -1 {
panic("combin: Permutation called before Next")
}
if dst == nil {
dst = make([]int, p.k)
} else if len(dst) != p.k {
panic(badInput)
}
copy(dst, p.permutation)
return dst
}
// PermutationIndex returns the index of the given permutation.
//
// The functions PermutationIndex and IndexToPermutation define a bijection
// between the integers and the NumPermutations(n, k) number of possible permutations.
// PermutationIndex returns the inverse of IndexToPermutation.
//
// PermutationIndex panics if perm is not a permutation of k of the first
// [0,n) integers, if n or k are negative, or if k is greater than n.
func PermutationIndex(perm []int, n, k int) int {
if n < 0 || k < 0 {
panic(errNegInput)
}
if n < k {
panic(badSetSize)
}
if len(perm) != k {
panic("combin: bad length permutation")
}
contains := make(map[int]struct{}, k)
for _, v := range perm {
if v < 0 || v >= n {
panic("combin: bad element")
}
contains[v] = struct{}{}
}
if len(contains) != k {
panic("combin: perm contains non-unique elements")
}
if n == k {
// The permutation is the ordering of the elements.
return equalPermutationIndex(perm)
}
// The permutation index is found by finding the combination index and the
// equalPermutation index. The combination index is found by just sorting
// the elements, and the permutation index is the ordering of the size
// of the elements.
tmp := make([]int, len(perm))
copy(tmp, perm)
idx := make([]int, len(perm))
for i := range idx {
idx[i] = i
}
s := sortInts{tmp, idx}
sort.Sort(s)
order := make([]int, len(perm))
for i, v := range idx {
order[v] = i
}
combIdx := CombinationIndex(tmp, n, k)
permIdx := equalPermutationIndex(order)
return combIdx*NumPermutations(k, k) + permIdx
}
type sortInts struct {
data []int
idx []int
}
func (s sortInts) Len() int {
return len(s.data)
}
func (s sortInts) Less(i, j int) bool {
return s.data[i] < s.data[j]
}
func (s sortInts) Swap(i, j int) {
s.data[i], s.data[j] = s.data[j], s.data[i]
s.idx[i], s.idx[j] = s.idx[j], s.idx[i]
}
// IndexToPermutation returns the permutation corresponding to the given index.
//
// The functions PermutationIndex and IndexToPermutation define a bijection
// between the integers and the NumPermutations(n, k) number of possible permutations.
// IndexToPermutation returns the inverse of PermutationIndex.
//
// The permutation is stored in-place into dst if dst is non-nil, otherwise
// a new slice is allocated and returned.
//
// IndexToPermutation panics if n or k are negative, if k is greater than n,
// or if idx is not in [0, NumPermutations(n,k)-1]. IndexToPermutation will also panic
// if dst is non-nil and len(dst) is not k.
func IndexToPermutation(dst []int, idx, n, k int) []int {
nPerm := NumPermutations(n, k)
if idx < 0 || idx >= nPerm {
panic("combin: invalid index")
}
if dst == nil {
dst = make([]int, k)
} else if len(dst) != k {
panic(badInput)
}
if n == k {
indexToEqualPermutation(dst, idx)
return dst
}
// First, we index into the combination (which of the k items to choose)
// and then we index into the n == k permutation of those k items. The
// indexing acts like a matrix with nComb rows and factorial(k) columns.
kPerm := NumPermutations(k, k)
combIdx := idx / kPerm
permIdx := idx % kPerm
comb := IndexToCombination(nil, combIdx, n, k) // Gives us the set of integers.
perm := make([]int, len(dst))
indexToEqualPermutation(perm, permIdx) // Gives their order.
for i, v := range perm {
dst[i] = comb[v]
}
return dst
}
// equalPermutationIndex returns the index of the given permutation of the
// first k integers.
func equalPermutationIndex(perm []int) int {
// Note(btracey): This is an n^2 algorithm, but factorial increases
// very quickly (25! overflows int64) so this is not a problem in
// practice.
idx := 0
for i, u := range perm {
less := 0
for _, v := range perm[i:] {
if v < u {
less++
}
}
idx += less * factorial(len(perm)-i-1)
}
return idx
}
// indexToEqualPermutation returns the permutation for the first len(dst)
// integers for the given index.
func indexToEqualPermutation(dst []int, idx int) {
for i := range dst {
dst[i] = i
}
for i := range dst {
f := factorial(len(dst) - i - 1)
r := idx / f
v := dst[i+r]
copy(dst[i+1:i+r+1], dst[i:i+r])
dst[i] = v
idx %= f
}
}
// factorial returns a!.
func factorial(a int) int {
f := 1
for i := 2; i <= a; i++ {
f *= i
}
return f
}
|