1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmat
import (
"math"
"sync"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/mathext"
"gonum.org/v1/gonum/stat/distuv"
)
// Wishart is a distribution over d×d positive symmetric definite matrices. It
// is parametrized by a scalar degrees of freedom parameter ν and a d×d positive
// definite matrix V.
//
// The Wishart PDF is given by
//
// p(X) = [|X|^((ν-d-1)/2) * exp(-tr(V^-1 * X)/2)] / [2^(ν*d/2) * |V|^(ν/2) * Γ_d(ν/2)]
//
// where X is a d×d PSD matrix, ν > d-1, |·| denotes the determinant, tr is the
// trace and Γ_d is the multivariate gamma function.
//
// See https://en.wikipedia.org/wiki/Wishart_distribution for more information.
type Wishart struct {
nu float64
src rand.Source
dim int
cholv mat.Cholesky
logdetv float64
upper mat.TriDense
once sync.Once
v *mat.SymDense // only stored if needed
}
// NewWishart returns a new Wishart distribution with the given shape matrix and
// degrees of freedom parameter. NewWishart returns whether the creation was
// successful.
//
// NewWishart panics if nu <= d - 1 where d is the order of v.
func NewWishart(v mat.Symmetric, nu float64, src rand.Source) (*Wishart, bool) {
dim := v.SymmetricDim()
if nu <= float64(dim-1) {
panic("wishart: nu must be greater than dim-1")
}
var chol mat.Cholesky
ok := chol.Factorize(v)
if !ok {
return nil, false
}
var u mat.TriDense
chol.UTo(&u)
w := &Wishart{
nu: nu,
src: src,
dim: dim,
cholv: chol,
logdetv: chol.LogDet(),
upper: u,
}
return w, true
}
// MeanSymTo calculates the mean matrix of the distribution in and stores it in dst.
// If dst is empty, it is resized to be an d×d symmetric matrix where d is the order
// of the receiver. When dst is non-empty, MeanSymTo panics if dst is not d×d.
func (w *Wishart) MeanSymTo(dst *mat.SymDense) {
if dst.IsEmpty() {
dst.ReuseAsSym(w.dim)
} else if dst.SymmetricDim() != w.dim {
panic(badDim)
}
w.setV()
dst.CopySym(w.v)
dst.ScaleSym(w.nu, dst)
}
// ProbSym returns the probability of the symmetric matrix x. If x is not positive
// definite (the Cholesky decomposition fails), it has 0 probability.
func (w *Wishart) ProbSym(x mat.Symmetric) float64 {
return math.Exp(w.LogProbSym(x))
}
// LogProbSym returns the log of the probability of the input symmetric matrix.
//
// LogProbSym returns -∞ if the input matrix is not positive definite (the Cholesky
// decomposition fails).
func (w *Wishart) LogProbSym(x mat.Symmetric) float64 {
dim := x.SymmetricDim()
if dim != w.dim {
panic(badDim)
}
var chol mat.Cholesky
ok := chol.Factorize(x)
if !ok {
return math.Inf(-1)
}
return w.logProbSymChol(&chol)
}
// LogProbSymChol returns the log of the probability of the input symmetric matrix
// given its Cholesky decomposition.
func (w *Wishart) LogProbSymChol(cholX *mat.Cholesky) float64 {
dim := cholX.SymmetricDim()
if dim != w.dim {
panic(badDim)
}
return w.logProbSymChol(cholX)
}
func (w *Wishart) logProbSymChol(cholX *mat.Cholesky) float64 {
// The PDF is
// p(X) = [|X|^((ν-d-1)/2) * exp(-tr(V^-1 * X)/2)] / [2^(ν*d/2) * |V|^(ν/2) * Γ_d(ν/2)]
// The LogPDF is thus
// (ν-d-1)/2 * log(|X|) - tr(V^-1 * X)/2 - (ν*d/2)*log(2) - ν/2 * log(|V|) - log(Γ_d(ν/2))
logdetx := cholX.LogDet()
// Compute tr(V^-1 * X), using the fact that X = Uᵀ * U.
var u mat.TriDense
cholX.UTo(&u)
var vinvx mat.Dense
err := w.cholv.SolveTo(&vinvx, u.T())
if err != nil {
return math.Inf(-1)
}
vinvx.Mul(&vinvx, &u)
tr := mat.Trace(&vinvx)
fnu := float64(w.nu)
fdim := float64(w.dim)
return 0.5*((fnu-fdim-1)*logdetx-tr-fnu*fdim*math.Ln2-fnu*w.logdetv) - mathext.MvLgamma(0.5*fnu, w.dim)
}
// RandSymTo generates a random symmetric matrix from the distribution.
// If dst is empty, it is resized to be an d×d symmetric matrix where d is the order
// of the receiver. When dst is non-empty, RandSymTo panics if dst is not d×d.
func (w *Wishart) RandSymTo(dst *mat.SymDense) {
var c mat.Cholesky
w.RandCholTo(&c)
c.ToSym(dst)
}
// RandCholTo generates the Cholesky decomposition of a random matrix from the distribution.
// If dst is empty, it is resized to be an d×d symmetric matrix where d is the order
// of the receiver. When dst is non-empty, RandCholTo panics if dst is not d×d.
func (w *Wishart) RandCholTo(dst *mat.Cholesky) {
// TODO(btracey): Modify the code if the underlying data from dst is exposed
// to avoid the dim^2 allocation here.
// Use the Bartlett Decomposition, which says that
// X ~ L A Aᵀ Lᵀ
// Where A is a lower triangular matrix in which the diagonal of A is
// generated from the square roots of χ^2 random variables, and the
// off-diagonals are generated from standard normal variables.
// The above gives the cholesky decomposition of X, where L_x = L A.
//
// mat works with the upper triagular decomposition, so we would like to do
// the same. We can instead say that
// U_x = L_xᵀ = (L * A)ᵀ = Aᵀ * Lᵀ = Aᵀ * U
// Instead, generate Aᵀ, by using the procedure above, except as an upper
// triangular matrix.
norm := distuv.Normal{
Mu: 0,
Sigma: 1,
Src: w.src,
}
t := mat.NewTriDense(w.dim, mat.Upper, nil)
for i := 0; i < w.dim; i++ {
v := distuv.ChiSquared{
K: w.nu - float64(i),
Src: w.src,
}.Rand()
t.SetTri(i, i, math.Sqrt(v))
}
for i := 0; i < w.dim; i++ {
for j := i + 1; j < w.dim; j++ {
t.SetTri(i, j, norm.Rand())
}
}
t.MulTri(t, &w.upper)
dst.SetFromU(t)
}
// setV computes and stores the covariance matrix of the distribution.
func (w *Wishart) setV() {
w.once.Do(func() {
w.v = mat.NewSymDense(w.dim, nil)
w.cholv.ToSym(w.v)
})
}
|