1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmv
import (
"math"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat"
"gonum.org/v1/gonum/stat/distuv"
)
// Normal is a multivariate normal distribution (also known as the multivariate
// Gaussian distribution). Its pdf in k dimensions is given by
//
// (2 π)^(-k/2) |Σ|^(-1/2) exp(-1/2 (x-μ)'Σ^-1(x-μ))
//
// where μ is the mean vector and Σ the covariance matrix. Σ must be symmetric
// and positive definite. Use NewNormal to construct.
type Normal struct {
mu []float64
sigma mat.SymDense
chol mat.Cholesky
logSqrtDet float64
dim int
// If src is altered, rnd must be updated.
src rand.Source
rnd *rand.Rand
}
// NewNormal creates a new Normal with the given mean and covariance matrix.
// NewNormal panics if len(mu) == 0, or if len(mu) != sigma.N. If the covariance
// matrix is not positive-definite, the returned boolean is false.
func NewNormal(mu []float64, sigma mat.Symmetric, src rand.Source) (*Normal, bool) {
if len(mu) == 0 {
panic(badZeroDimension)
}
dim := sigma.SymmetricDim()
if dim != len(mu) {
panic(badSizeMismatch)
}
n := &Normal{
src: src,
rnd: rand.New(src),
dim: dim,
mu: make([]float64, dim),
}
copy(n.mu, mu)
ok := n.chol.Factorize(sigma)
if !ok {
return nil, false
}
n.sigma = *mat.NewSymDense(dim, nil)
n.sigma.CopySym(sigma)
n.logSqrtDet = 0.5 * n.chol.LogDet()
return n, true
}
// NewNormalChol creates a new Normal distribution with the given mean and
// covariance matrix represented by its Cholesky decomposition. NewNormalChol
// panics if len(mu) is not equal to chol.Size().
func NewNormalChol(mu []float64, chol *mat.Cholesky, src rand.Source) *Normal {
dim := len(mu)
if dim != chol.SymmetricDim() {
panic(badSizeMismatch)
}
n := &Normal{
src: src,
rnd: rand.New(src),
dim: dim,
mu: make([]float64, dim),
}
n.chol.Clone(chol)
copy(n.mu, mu)
n.logSqrtDet = 0.5 * n.chol.LogDet()
return n
}
// NewNormalPrecision creates a new Normal distribution with the given mean and
// precision matrix (inverse of the covariance matrix). NewNormalPrecision
// panics if len(mu) is not equal to prec.SymmetricDim(). If the precision matrix
// is not positive-definite, NewNormalPrecision returns nil for norm and false
// for ok.
func NewNormalPrecision(mu []float64, prec *mat.SymDense, src rand.Source) (norm *Normal, ok bool) {
if len(mu) == 0 {
panic(badZeroDimension)
}
dim := prec.SymmetricDim()
if dim != len(mu) {
panic(badSizeMismatch)
}
// TODO(btracey): Computing a matrix inverse is generally numerically unstable.
// This only has to compute the inverse of a positive definite matrix, which
// is much better, but this still loses precision. It is worth considering if
// instead the precision matrix should be stored explicitly and used instead
// of the Cholesky decomposition of the covariance matrix where appropriate.
var chol mat.Cholesky
ok = chol.Factorize(prec)
if !ok {
return nil, false
}
var sigma mat.SymDense
err := chol.InverseTo(&sigma)
if err != nil {
return nil, false
}
return NewNormal(mu, &sigma, src)
}
// ConditionNormal returns the Normal distribution that is the receiver conditioned
// on the input evidence. The returned multivariate normal has dimension
// n - len(observed), where n is the dimension of the original receiver. The updated
// mean and covariance are
//
// mu = mu_un + sigma_{ob,un}ᵀ * sigma_{ob,ob}^-1 (v - mu_ob)
// sigma = sigma_{un,un} - sigma_{ob,un}ᵀ * sigma_{ob,ob}^-1 * sigma_{ob,un}
//
// where mu_un and mu_ob are the original means of the unobserved and observed
// variables respectively, sigma_{un,un} is the unobserved subset of the covariance
// matrix, sigma_{ob,ob} is the observed subset of the covariance matrix, and
// sigma_{un,ob} are the cross terms. The elements of x_2 have been observed with
// values v. The dimension order is preserved during conditioning, so if the value
// of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...}
// of the original Normal distribution.
//
// ConditionNormal returns {nil, false} if there is a failure during the update.
// Mathematically this is impossible, but can occur with finite precision arithmetic.
func (n *Normal) ConditionNormal(observed []int, values []float64, src rand.Source) (*Normal, bool) {
if len(observed) == 0 {
panic("normal: no observed value")
}
if len(observed) != len(values) {
panic(badInputLength)
}
for _, v := range observed {
if v < 0 || v >= n.Dim() {
panic("normal: observed value out of bounds")
}
}
_, mu1, sigma11 := studentsTConditional(observed, values, math.Inf(1), n.mu, &n.sigma)
if mu1 == nil {
return nil, false
}
return NewNormal(mu1, sigma11, src)
}
// CovarianceMatrix stores the covariance matrix of the distribution in dst.
// Upon return, the value at element {i, j} of the covariance matrix is equal
// to the covariance of the i^th and j^th variables.
//
// covariance(i, j) = E[(x_i - E[x_i])(x_j - E[x_j])]
//
// If the dst matrix is empty it will be resized to the correct dimensions,
// otherwise dst must match the dimension of the receiver or CovarianceMatrix
// will panic.
func (n *Normal) CovarianceMatrix(dst *mat.SymDense) {
if dst.IsEmpty() {
*dst = *(dst.GrowSym(n.dim).(*mat.SymDense))
} else if dst.SymmetricDim() != n.dim {
panic("normal: input matrix size mismatch")
}
dst.CopySym(&n.sigma)
}
// Dim returns the dimension of the distribution.
func (n *Normal) Dim() int {
return n.dim
}
// Entropy returns the differential entropy of the distribution.
func (n *Normal) Entropy() float64 {
return float64(n.dim)/2*(1+logTwoPi) + n.logSqrtDet
}
// LogProb computes the log of the pdf of the point x.
func (n *Normal) LogProb(x []float64) float64 {
dim := n.dim
if len(x) != dim {
panic(badSizeMismatch)
}
return normalLogProb(x, n.mu, &n.chol, n.logSqrtDet)
}
// NormalLogProb computes the log probability of the location x for a Normal
// distribution the given mean and Cholesky decomposition of the covariance matrix.
// NormalLogProb panics if len(x) is not equal to len(mu), or if len(mu) != chol.Size().
//
// This function saves time and memory if the Cholesky decomposition is already
// available. Otherwise, the NewNormal function should be used.
func NormalLogProb(x, mu []float64, chol *mat.Cholesky) float64 {
dim := len(mu)
if len(x) != dim {
panic(badSizeMismatch)
}
if chol.SymmetricDim() != dim {
panic(badSizeMismatch)
}
logSqrtDet := 0.5 * chol.LogDet()
return normalLogProb(x, mu, chol, logSqrtDet)
}
// normalLogProb is the same as NormalLogProb, but does not make size checks and
// additionally requires log(|Σ|^-0.5)
func normalLogProb(x, mu []float64, chol *mat.Cholesky, logSqrtDet float64) float64 {
dim := len(mu)
c := -0.5*float64(dim)*logTwoPi - logSqrtDet
dst := stat.Mahalanobis(mat.NewVecDense(dim, x), mat.NewVecDense(dim, mu), chol)
return c - 0.5*dst*dst
}
// MarginalNormal returns the marginal distribution of the given input variables.
// That is, MarginalNormal returns
//
// p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
//
// where x_i are the dimensions in the input, and x_o are the remaining dimensions.
// See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
//
// The input src is passed to the call to NewNormal.
func (n *Normal) MarginalNormal(vars []int, src rand.Source) (*Normal, bool) {
newMean := make([]float64, len(vars))
for i, v := range vars {
newMean[i] = n.mu[v]
}
var s mat.SymDense
s.SubsetSym(&n.sigma, vars)
return NewNormal(newMean, &s, src)
}
// MarginalNormalSingle returns the marginal of the given input variable.
// That is, MarginalNormal returns
//
// p(x_i) = \int_{x_¬i} p(x_i | x_¬i) p(x_¬i) dx_¬i
//
// where i is the input index.
// See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
//
// The input src is passed to the constructed distuv.Normal.
func (n *Normal) MarginalNormalSingle(i int, src rand.Source) distuv.Normal {
return distuv.Normal{
Mu: n.mu[i],
Sigma: math.Sqrt(n.sigma.At(i, i)),
Src: src,
}
}
// Mean returns the mean of the probability distribution.
//
// If dst is not nil, the mean will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
func (n *Normal) Mean(dst []float64) []float64 {
dst = reuseAs(dst, n.dim)
copy(dst, n.mu)
return dst
}
// Prob computes the value of the probability density function at x.
func (n *Normal) Prob(x []float64) float64 {
return math.Exp(n.LogProb(x))
}
// Quantile returns the value of the multi-dimensional inverse cumulative
// distribution function at p.
//
// If dst is not nil, the quantile will be stored in-place into dst and
// returned, otherwise a new slice will be allocated first. If dst is not nil,
// it must have length equal to the dimension of the distribution. Quantile will
// also panic if the length of p is not equal to the dimension of the
// distribution.
//
// All of the values of p must be between 0 and 1, inclusive, or Quantile will
// panic.
func (n *Normal) Quantile(dst, p []float64) []float64 {
if len(p) != n.dim {
panic(badInputLength)
}
dst = reuseAs(dst, n.dim)
// Transform to a standard normal and then transform to a multivariate Gaussian.
for i, v := range p {
dst[i] = distuv.UnitNormal.Quantile(v)
}
n.TransformNormal(dst, dst)
return dst
}
// Rand generates a random sample according to the distributon.
//
// If dst is not nil, the sample will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
func (n *Normal) Rand(dst []float64) []float64 {
return NormalRand(dst, n.mu, &n.chol, n.src)
}
// NormalRand generates a random sample from a multivariate normal distributon
// given by the mean and the Cholesky factorization of the covariance matrix.
//
// If dst is not nil, the sample will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
//
// This function saves time and memory if the Cholesky factorization is already
// available. Otherwise, the NewNormal function should be used.
func NormalRand(dst, mean []float64, chol *mat.Cholesky, src rand.Source) []float64 {
if len(mean) != chol.SymmetricDim() {
panic(badInputLength)
}
dst = reuseAs(dst, len(mean))
if src == nil {
for i := range dst {
dst[i] = rand.NormFloat64()
}
} else {
rnd := rand.New(src)
for i := range dst {
dst[i] = rnd.NormFloat64()
}
}
transformNormal(dst, dst, mean, chol)
return dst
}
// EigenSym is an eigendecomposition of a symmetric matrix.
type EigenSym interface {
mat.Symmetric
// RawValues returns all eigenvalues in ascending order. The returned slice
// must not be modified.
RawValues() []float64
// RawQ returns an orthogonal matrix whose columns contain the eigenvectors.
// The returned matrix must not be modified.
RawQ() mat.Matrix
}
// PositivePartEigenSym is an EigenSym that sets any negative eigenvalues from
// the given eigendecomposition to zero but otherwise returns the values
// unchanged.
//
// This is useful for filtering eigenvalues of positive semi-definite matrices
// that are almost zero but negative due to rounding errors.
type PositivePartEigenSym struct {
ed *mat.EigenSym
vals []float64
}
var _ EigenSym = (*PositivePartEigenSym)(nil)
var _ EigenSym = (*mat.EigenSym)(nil)
// NewPositivePartEigenSym returns a new PositivePartEigenSym, wrapping the
// given eigendecomposition.
func NewPositivePartEigenSym(ed *mat.EigenSym) *PositivePartEigenSym {
n := ed.SymmetricDim()
vals := make([]float64, n)
for i, lamda := range ed.RawValues() {
if lamda > 0 {
vals[i] = lamda
}
}
return &PositivePartEigenSym{
ed: ed,
vals: vals,
}
}
// SymmetricDim returns the value from the wrapped eigendecomposition.
func (ed *PositivePartEigenSym) SymmetricDim() int { return ed.ed.SymmetricDim() }
// Dims returns the dimensions from the wrapped eigendecomposition.
func (ed *PositivePartEigenSym) Dims() (r, c int) { return ed.ed.Dims() }
// At returns the value from the wrapped eigendecomposition.
func (ed *PositivePartEigenSym) At(i, j int) float64 { return ed.ed.At(i, j) }
// T returns the transpose from the wrapped eigendecomposition.
func (ed *PositivePartEigenSym) T() mat.Matrix { return ed.ed.T() }
// RawQ returns the orthogonal matrix Q from the wrapped eigendecomposition. The
// returned matrix must not be modified.
func (ed *PositivePartEigenSym) RawQ() mat.Matrix { return ed.ed.RawQ() }
// RawValues returns the eigenvalues from the wrapped eigendecomposition in
// ascending order with any negative value replaced by zero. The returned slice
// must not be modified.
func (ed *PositivePartEigenSym) RawValues() []float64 { return ed.vals }
// NormalRandCov generates a random sample from a multivariate normal
// distribution given by the mean and the covariance matrix.
//
// If dst is not nil, the sample will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
//
// cov should be *mat.Cholesky, *mat.PivotedCholesky or EigenSym, otherwise
// NormalRandCov will be very inefficient because a pivoted Cholesky
// factorization of cov will be computed for every sample.
//
// If cov is an EigenSym, all eigenvalues returned by RawValues must be
// non-negative, otherwise NormalRandCov will panic.
func NormalRandCov(dst, mean []float64, cov mat.Symmetric, src rand.Source) []float64 {
n := len(mean)
if cov.SymmetricDim() != n {
panic(badInputLength)
}
dst = reuseAs(dst, n)
if src == nil {
for i := range dst {
dst[i] = rand.NormFloat64()
}
} else {
rnd := rand.New(src)
for i := range dst {
dst[i] = rnd.NormFloat64()
}
}
switch cov := cov.(type) {
case *mat.Cholesky:
dstVec := mat.NewVecDense(n, dst)
dstVec.MulVec(cov.RawU().T(), dstVec)
case *mat.PivotedCholesky:
dstVec := mat.NewVecDense(n, dst)
dstVec.MulVec(cov.RawU().T(), dstVec)
dstVec.Permute(cov.ColumnPivots(nil), true)
case EigenSym:
vals := cov.RawValues()
if vals[0] < 0 {
panic("distmv: covariance matrix is not positive semi-definite")
}
for i, val := range vals {
dst[i] *= math.Sqrt(val)
}
dstVec := mat.NewVecDense(n, dst)
dstVec.MulVec(cov.RawQ(), dstVec)
default:
var chol mat.PivotedCholesky
chol.Factorize(cov, -1)
dstVec := mat.NewVecDense(n, dst)
dstVec.MulVec(chol.RawU().T(), dstVec)
dstVec.Permute(chol.ColumnPivots(nil), true)
}
floats.Add(dst, mean)
return dst
}
// ScoreInput returns the gradient of the log-probability with respect to the
// input x. That is, ScoreInput computes
//
// ∇_x log(p(x))
//
// If dst is not nil, the score will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
func (n *Normal) ScoreInput(dst, x []float64) []float64 {
// Normal log probability is
// c - 0.5*(x-μ)' Σ^-1 (x-μ).
// So the derivative is just
// -Σ^-1 (x-μ).
if len(x) != n.Dim() {
panic(badInputLength)
}
dst = reuseAs(dst, n.dim)
floats.SubTo(dst, x, n.mu)
dstVec := mat.NewVecDense(len(dst), dst)
err := n.chol.SolveVecTo(dstVec, dstVec)
if err != nil {
panic(err)
}
floats.Scale(-1, dst)
return dst
}
// SetMean changes the mean of the normal distribution. SetMean panics if len(mu)
// does not equal the dimension of the normal distribution.
func (n *Normal) SetMean(mu []float64) {
if len(mu) != n.Dim() {
panic(badSizeMismatch)
}
copy(n.mu, mu)
}
// TransformNormal transforms x generated from a standard multivariate normal
// into a vector that has been generated under the normal distribution of the
// receiver.
//
// If dst is not nil, the result will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution. TransformNormal will
// also panic if the length of x is not equal to the dimension of the receiver.
func (n *Normal) TransformNormal(dst, x []float64) []float64 {
if len(x) != n.dim {
panic(badInputLength)
}
dst = reuseAs(dst, n.dim)
transformNormal(dst, x, n.mu, &n.chol)
return dst
}
// transformNormal performs the same operation as Normal.TransformNormal except
// no safety checks are performed and all memory must be provided.
func transformNormal(dst, normal, mu []float64, chol *mat.Cholesky) []float64 {
dim := len(mu)
dstVec := mat.NewVecDense(dim, dst)
srcVec := mat.NewVecDense(dim, normal)
// If dst and normal are the same slice, make them the same Vector otherwise
// mat complains about being tricky.
if &normal[0] == &dst[0] {
srcVec = dstVec
}
dstVec.MulVec(chol.RawU().T(), srcVec)
floats.Add(dst, mu)
return dst
}
|