1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmv
import (
"math"
"sort"
"golang.org/x/exp/rand"
"golang.org/x/tools/container/intsets"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat"
"gonum.org/v1/gonum/stat/distuv"
)
// StudentsT is a multivariate Student's T distribution. It is a distribution over
// ℝ^n with the probability density
//
// p(y) = (Γ((ν+n)/2) / Γ(ν/2)) * (νπ)^(-n/2) * |Ʃ|^(-1/2) *
// (1 + 1/ν * (y-μ)ᵀ * Ʃ^-1 * (y-μ))^(-(ν+n)/2)
//
// where ν is a scalar greater than 2, μ is a vector in ℝ^n, and Ʃ is an n×n
// symmetric positive definite matrix.
//
// In this distribution, ν sets the spread of the distribution, similar to
// the degrees of freedom in a univariate Student's T distribution. As ν → ∞,
// the distribution approaches a multi-variate normal distribution.
// μ is the mean of the distribution, and the covariance is ν/(ν-2)*Ʃ.
//
// See https://en.wikipedia.org/wiki/Student%27s_t-distribution and
// http://users.isy.liu.se/en/rt/roth/student.pdf for more information.
type StudentsT struct {
nu float64
mu []float64
// If src is altered, rnd must be updated.
src rand.Source
rnd *rand.Rand
sigma mat.SymDense // only stored if needed
chol mat.Cholesky
lower mat.TriDense
logSqrtDet float64
dim int
}
// NewStudentsT creates a new StudentsT with the given nu, mu, and sigma
// parameters.
//
// NewStudentsT panics if len(mu) == 0, or if len(mu) != sigma.SymmetricDim(). If
// the covariance matrix is not positive-definite, nil is returned and ok is false.
func NewStudentsT(mu []float64, sigma mat.Symmetric, nu float64, src rand.Source) (dist *StudentsT, ok bool) {
if len(mu) == 0 {
panic(badZeroDimension)
}
dim := sigma.SymmetricDim()
if dim != len(mu) {
panic(badSizeMismatch)
}
s := &StudentsT{
nu: nu,
mu: make([]float64, dim),
dim: dim,
src: src,
}
if src != nil {
s.rnd = rand.New(src)
}
copy(s.mu, mu)
ok = s.chol.Factorize(sigma)
if !ok {
return nil, false
}
s.sigma = *mat.NewSymDense(dim, nil)
s.sigma.CopySym(sigma)
s.chol.LTo(&s.lower)
s.logSqrtDet = 0.5 * s.chol.LogDet()
return s, true
}
// ConditionStudentsT returns the Student's T distribution that is the receiver
// conditioned on the input evidence, and the success of the operation.
// The returned Student's T has dimension
// n - len(observed), where n is the dimension of the original receiver.
// The dimension order is preserved during conditioning, so if the value
// of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...}
// of the original Student's T distribution.
//
// ok indicates whether there was a failure during the update. If ok is false
// the operation failed and dist is not usable.
// Mathematically this is impossible, but can occur with finite precision arithmetic.
func (s *StudentsT) ConditionStudentsT(observed []int, values []float64, src rand.Source) (dist *StudentsT, ok bool) {
if len(observed) == 0 {
panic("studentst: no observed value")
}
if len(observed) != len(values) {
panic(badInputLength)
}
for _, v := range observed {
if v < 0 || v >= s.dim {
panic("studentst: observed value out of bounds")
}
}
newNu, newMean, newSigma := studentsTConditional(observed, values, s.nu, s.mu, &s.sigma)
if newMean == nil {
return nil, false
}
return NewStudentsT(newMean, newSigma, newNu, src)
}
// studentsTConditional updates a Student's T distribution based on the observed samples
// (see documentation for the public function). The Gaussian conditional update
// is treated as a special case when nu == math.Inf(1).
func studentsTConditional(observed []int, values []float64, nu float64, mu []float64, sigma mat.Symmetric) (newNu float64, newMean []float64, newSigma *mat.SymDense) {
dim := len(mu)
ob := len(observed)
unobserved := findUnob(observed, dim)
unob := len(unobserved)
if unob == 0 {
panic("stat: all dimensions observed")
}
mu1 := make([]float64, unob)
for i, v := range unobserved {
mu1[i] = mu[v]
}
mu2 := make([]float64, ob) // really v - mu2
for i, v := range observed {
mu2[i] = values[i] - mu[v]
}
var sigma11, sigma22 mat.SymDense
sigma11.SubsetSym(sigma, unobserved)
sigma22.SubsetSym(sigma, observed)
sigma21 := mat.NewDense(ob, unob, nil)
for i, r := range observed {
for j, c := range unobserved {
v := sigma.At(r, c)
sigma21.Set(i, j, v)
}
}
var chol mat.Cholesky
ok := chol.Factorize(&sigma22)
if !ok {
return math.NaN(), nil, nil
}
// Compute mu_1 + sigma_{2,1}ᵀ * sigma_{2,2}^-1 (v - mu_2).
v := mat.NewVecDense(ob, mu2)
var tmp, tmp2 mat.VecDense
err := chol.SolveVecTo(&tmp, v)
if err != nil {
return math.NaN(), nil, nil
}
tmp2.MulVec(sigma21.T(), &tmp)
for i := range mu1 {
mu1[i] += tmp2.At(i, 0)
}
// Compute tmp4 = sigma_{2,1}ᵀ * sigma_{2,2}^-1 * sigma_{2,1}.
// TODO(btracey): Should this be a method of SymDense?
var tmp3, tmp4 mat.Dense
err = chol.SolveTo(&tmp3, sigma21)
if err != nil {
return math.NaN(), nil, nil
}
tmp4.Mul(sigma21.T(), &tmp3)
// Compute sigma_{1,1} - tmp4
// TODO(btracey): If tmp4 can constructed with a method, then this can be
// replaced with SubSym.
for i := 0; i < len(unobserved); i++ {
for j := i; j < len(unobserved); j++ {
v := sigma11.At(i, j)
sigma11.SetSym(i, j, v-tmp4.At(i, j))
}
}
// The computed variables are accurate for a Normal.
if math.IsInf(nu, 1) {
return nu, mu1, &sigma11
}
// Compute beta = (v - mu_2)ᵀ * sigma_{2,2}^-1 * (v - mu_2)ᵀ
beta := mat.Dot(v, &tmp)
// Scale the covariance matrix
sigma11.ScaleSym((nu+beta)/(nu+float64(ob)), &sigma11)
return nu + float64(ob), mu1, &sigma11
}
// findUnob returns the unobserved variables (the complementary set to observed).
// findUnob panics if any value repeated in observed.
func findUnob(observed []int, dim int) (unobserved []int) {
var setOb intsets.Sparse
for _, v := range observed {
setOb.Insert(v)
}
var setAll intsets.Sparse
for i := 0; i < dim; i++ {
setAll.Insert(i)
}
var setUnob intsets.Sparse
setUnob.Difference(&setAll, &setOb)
unobserved = setUnob.AppendTo(nil)
sort.Ints(unobserved)
return unobserved
}
// CovarianceMatrix calculates the covariance matrix of the distribution,
// storing the result in dst. Upon return, the value at element {i, j} of the
// covariance matrix is equal to the covariance of the i^th and j^th variables.
//
// covariance(i, j) = E[(x_i - E[x_i])(x_j - E[x_j])]
//
// If the dst matrix is empty it will be resized to the correct dimensions,
// otherwise dst must match the dimension of the receiver or CovarianceMatrix
// will panic.
func (st *StudentsT) CovarianceMatrix(dst *mat.SymDense) {
if dst.IsEmpty() {
*dst = *(dst.GrowSym(st.dim).(*mat.SymDense))
} else if dst.SymmetricDim() != st.dim {
panic("studentst: input matrix size mismatch")
}
dst.CopySym(&st.sigma)
dst.ScaleSym(st.nu/(st.nu-2), dst)
}
// Dim returns the dimension of the distribution.
func (s *StudentsT) Dim() int {
return s.dim
}
// LogProb computes the log of the pdf of the point x.
func (s *StudentsT) LogProb(y []float64) float64 {
if len(y) != s.dim {
panic(badInputLength)
}
nu := s.nu
n := float64(s.dim)
lg1, _ := math.Lgamma((nu + n) / 2)
lg2, _ := math.Lgamma(nu / 2)
t1 := lg1 - lg2 - n/2*math.Log(nu*math.Pi) - s.logSqrtDet
mahal := stat.Mahalanobis(mat.NewVecDense(len(y), y), mat.NewVecDense(len(s.mu), s.mu), &s.chol)
mahal *= mahal
return t1 - ((nu+n)/2)*math.Log(1+mahal/nu)
}
// MarginalStudentsT returns the marginal distribution of the given input variables,
// and the success of the operation.
// That is, MarginalStudentsT returns
//
// p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
//
// where x_i are the dimensions in the input, and x_o are the remaining dimensions.
// See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
//
// The input src is passed to the created StudentsT.
//
// ok indicates whether there was a failure during the marginalization. If ok is false
// the operation failed and dist is not usable.
// Mathematically this is impossible, but can occur with finite precision arithmetic.
func (s *StudentsT) MarginalStudentsT(vars []int, src rand.Source) (dist *StudentsT, ok bool) {
newMean := make([]float64, len(vars))
for i, v := range vars {
newMean[i] = s.mu[v]
}
var newSigma mat.SymDense
newSigma.SubsetSym(&s.sigma, vars)
return NewStudentsT(newMean, &newSigma, s.nu, src)
}
// MarginalStudentsTSingle returns the marginal distribution of the given input variable.
// That is, MarginalStudentsTSingle returns
//
// p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
//
// where i is the input index, and x_o are the remaining dimensions.
// See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
//
// The input src is passed to the call to NewStudentsT.
func (s *StudentsT) MarginalStudentsTSingle(i int, src rand.Source) distuv.StudentsT {
return distuv.StudentsT{
Mu: s.mu[i],
Sigma: math.Sqrt(s.sigma.At(i, i)),
Nu: s.nu,
Src: src,
}
}
// TODO(btracey): Implement marginal single. Need to modify univariate StudentsT
// to be three-parameter.
// Mean returns the mean of the probability distribution.
//
// If dst is not nil, the mean will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
func (s *StudentsT) Mean(dst []float64) []float64 {
dst = reuseAs(dst, s.dim)
copy(dst, s.mu)
return dst
}
// Nu returns the degrees of freedom parameter of the distribution.
func (s *StudentsT) Nu() float64 {
return s.nu
}
// Prob computes the value of the probability density function at x.
func (s *StudentsT) Prob(y []float64) float64 {
return math.Exp(s.LogProb(y))
}
// Rand generates a random sample according to the distributon.
//
// If dst is not nil, the sample will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
func (s *StudentsT) Rand(dst []float64) []float64 {
// If Y is distributed according to N(0,Sigma), and U is chi^2 with
// parameter ν, then
// X = mu + Y * sqrt(nu / U)
// X is distributed according to this distribution.
// Generate Y.
dst = reuseAs(dst, s.dim)
if s.rnd == nil {
for i := range dst {
dst[i] = rand.NormFloat64()
}
} else {
for i := range dst {
dst[i] = s.rnd.NormFloat64()
}
}
y := mat.NewVecDense(s.dim, dst)
y.MulVec(&s.lower, y)
// Compute mu + Y*sqrt(nu/U)
u := distuv.ChiSquared{K: s.nu, Src: s.src}.Rand()
floats.AddScaledTo(dst, s.mu, math.Sqrt(s.nu/u), dst)
return dst
}
|