1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmv
import (
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/floats/scalar"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat"
)
func TestStudentTProbs(t *testing.T) {
src := rand.New(rand.NewSource(1))
for _, test := range []struct {
nu float64
mu []float64
sigma *mat.SymDense
x [][]float64
probs []float64
}{
{
nu: 3,
mu: []float64{0, 0},
sigma: mat.NewSymDense(2, []float64{1, 0, 0, 1}),
x: [][]float64{
{0, 0},
{1, -1},
{3, 4},
{-1, -2},
},
// Outputs compared with WolframAlpha.
probs: []float64{
0.159154943091895335768883,
0.0443811199724279860006777747927,
0.0005980371870904696541052658,
0.01370560783418571283428283,
},
},
{
nu: 4,
mu: []float64{2, -3},
sigma: mat.NewSymDense(2, []float64{8, -1, -1, 5}),
x: [][]float64{
{0, 0},
{1, -1},
{3, 4},
{-1, -2},
{2, -3},
},
// Outputs compared with WolframAlpha.
probs: []float64{
0.007360810111491788657953608191001,
0.0143309905845607117740440592999,
0.0005307774290578041397794096037035009801668903,
0.0115657422475668739943625904793879,
0.0254851872062589062995305736215,
},
},
} {
s, ok := NewStudentsT(test.mu, test.sigma, test.nu, src)
if !ok {
t.Fatal("bad test")
}
for i, x := range test.x {
xcpy := make([]float64, len(x))
copy(xcpy, x)
p := s.Prob(x)
if !floats.Same(x, xcpy) {
t.Errorf("X modified during call to prob, %v, %v", x, xcpy)
}
if !scalar.EqualWithinAbsOrRel(p, test.probs[i], 1e-10, 1e-10) {
t.Errorf("Probability mismatch. X = %v. Got %v, want %v.", x, p, test.probs[i])
}
}
}
}
func TestStudentsTRand(t *testing.T) {
src := rand.New(rand.NewSource(1))
for cas, test := range []struct {
mean []float64
cov *mat.SymDense
nu float64
tolcov float64
}{
{
mean: []float64{0, 0},
cov: mat.NewSymDense(2, []float64{1, 0, 0, 1}),
nu: 4,
tolcov: 1e-2,
},
{
mean: []float64{3, 4},
cov: mat.NewSymDense(2, []float64{5, 1.2, 1.2, 6}),
nu: 8,
tolcov: 1e-2,
},
{
mean: []float64{3, 4, -2},
cov: mat.NewSymDense(3, []float64{5, 1.2, -0.8, 1.2, 6, 0.4, -0.8, 0.4, 2}),
nu: 8,
tolcov: 1e-2,
},
} {
s, ok := NewStudentsT(test.mean, test.cov, test.nu, src)
if !ok {
t.Fatal("bad test")
}
const nSamples = 1e6
dim := len(test.mean)
samps := mat.NewDense(nSamples, dim, nil)
for i := 0; i < nSamples; i++ {
s.Rand(samps.RawRowView(i))
}
estMean := make([]float64, dim)
for i := range estMean {
estMean[i] = stat.Mean(mat.Col(nil, i, samps), nil)
}
mean := s.Mean(nil)
if !floats.EqualApprox(estMean, mean, 1e-2) {
t.Errorf("Mean mismatch: want: %v, got %v", test.mean, estMean)
}
var cov, estCov mat.SymDense
s.CovarianceMatrix(&cov)
stat.CovarianceMatrix(&estCov, samps, nil)
if !mat.EqualApprox(&estCov, &cov, test.tolcov) {
t.Errorf("Case %d: Cov mismatch: want: %v, got %v", cas, &cov, &estCov)
}
}
}
func TestStudentsTConditional(t *testing.T) {
src := rand.New(rand.NewSource(1))
for _, test := range []struct {
mean []float64
cov *mat.SymDense
nu float64
idx []int
value []float64
tolcov float64
}{
{
mean: []float64{3, 4, -2},
cov: mat.NewSymDense(3, []float64{5, 1.2, -0.8, 1.2, 6, 0.4, -0.8, 0.4, 2}),
nu: 8,
idx: []int{0},
value: []float64{6},
tolcov: 1e-2,
},
} {
s, ok := NewStudentsT(test.mean, test.cov, test.nu, src)
if !ok {
t.Fatal("bad test")
}
sUp, ok := s.ConditionStudentsT(test.idx, test.value, src)
if !ok {
t.Error("unexpected failure of ConditionStudentsT")
}
// Compute the other values by hand the inefficient way to compare
newNu := test.nu + float64(len(test.idx))
if newNu != sUp.nu {
t.Errorf("Updated nu mismatch. Got %v, want %v", s.nu, newNu)
}
dim := len(test.mean)
unob := findUnob(test.idx, dim)
ob := test.idx
muUnob := make([]float64, len(unob))
for i, v := range unob {
muUnob[i] = test.mean[v]
}
muOb := make([]float64, len(ob))
for i, v := range ob {
muOb[i] = test.mean[v]
}
var sig11, sig22 mat.SymDense
sig11.SubsetSym(&s.sigma, unob)
sig22.SubsetSym(&s.sigma, ob)
sig12 := mat.NewDense(len(unob), len(ob), nil)
for i := range unob {
for j := range ob {
sig12.Set(i, j, s.sigma.At(unob[i], ob[j]))
}
}
shift := make([]float64, len(ob))
copy(shift, test.value)
floats.Sub(shift, muOb)
newMu := make([]float64, len(muUnob))
newMuVec := mat.NewVecDense(len(muUnob), newMu)
shiftVec := mat.NewVecDense(len(shift), shift)
var tmp mat.VecDense
err := tmp.SolveVec(&sig22, shiftVec)
if err != nil {
t.Errorf("unexpected error from vector solve: %v", err)
}
newMuVec.MulVec(sig12, &tmp)
floats.Add(newMu, muUnob)
if !floats.EqualApprox(newMu, sUp.mu, 1e-10) {
t.Errorf("Mu mismatch. Got %v, want %v", sUp.mu, newMu)
}
var tmp2 mat.Dense
err = tmp2.Solve(&sig22, sig12.T())
if err != nil {
t.Errorf("unexpected error from dense solve: %v", err)
}
var tmp3 mat.Dense
tmp3.Mul(sig12, &tmp2)
tmp3.Sub(&sig11, &tmp3)
dot := mat.Dot(shiftVec, &tmp)
tmp3.Scale((test.nu+dot)/(test.nu+float64(len(ob))), &tmp3)
if !mat.EqualApprox(&tmp3, &sUp.sigma, 1e-10) {
t.Errorf("Sigma mismatch")
}
}
}
func TestStudentsTMarginalSingle(t *testing.T) {
for _, test := range []struct {
mu []float64
sigma *mat.SymDense
nu float64
}{
{
mu: []float64{2, 3, 4},
sigma: mat.NewSymDense(3, []float64{2, 0.5, 3, 0.5, 1, 0.6, 3, 0.6, 10}),
nu: 5,
},
{
mu: []float64{2, 3, 4, 5},
sigma: mat.NewSymDense(4, []float64{2, 0.5, 3, 0.1, 0.5, 1, 0.6, 0.2, 3, 0.6, 10, 0.3, 0.1, 0.2, 0.3, 3}),
nu: 6,
},
} {
studentst, ok := NewStudentsT(test.mu, test.sigma, test.nu, nil)
if !ok {
t.Fatalf("Bad test, covariance matrix not positive definite")
}
for i, mean := range test.mu {
st := studentst.MarginalStudentsTSingle(i, nil)
if st.Mean() != mean {
t.Errorf("Mean mismatch nil Sigma, idx %v: want %v, got %v.", i, mean, st.Mean())
}
std := math.Sqrt(test.sigma.At(i, i))
if math.Abs(st.Sigma-std) > 1e-14 {
t.Errorf("StdDev mismatch nil Sigma, idx %v: want %v, got %v.", i, std, st.StdDev())
}
if st.Nu != test.nu {
t.Errorf("Nu mismatch nil Sigma, idx %v: want %v, got %v ", i, test.nu, st.Nu)
}
}
}
}
|