1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"errors"
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// PC is a type for computing and extracting the principal components of a
// matrix. The results of the principal components analysis are only valid
// if the call to PrincipalComponents was successful.
type PC struct {
n, d int
weights []float64
svd *mat.SVD
ok bool
}
// PrincipalComponents performs a weighted principal components analysis on the
// matrix of the input data which is represented as an n×d matrix a where each
// row is an observation and each column is a variable.
//
// PrincipalComponents centers the variables but does not scale the variance.
//
// The weights slice is used to weight the observations. If weights is nil, each
// weight is considered to have a value of one, otherwise the length of weights
// must match the number of observations or PrincipalComponents will panic.
//
// PrincipalComponents returns whether the analysis was successful.
func (c *PC) PrincipalComponents(a mat.Matrix, weights []float64) (ok bool) {
c.n, c.d = a.Dims()
if weights != nil && len(weights) != c.n {
panic("stat: len(weights) != observations")
}
c.svd, c.ok = svdFactorizeCentered(c.svd, a, weights)
if c.ok {
c.weights = append(c.weights[:0], weights...)
}
return c.ok
}
// VectorsTo returns the component direction vectors of a principal components
// analysis. The vectors are returned in the columns of a d×min(n, d) matrix.
//
// If dst is empty, VectorsTo will resize dst to be d×min(n, d). When dst is
// non-empty, VectorsTo will panic if dst is not d×min(n, d). VectorsTo will also
// panic if the receiver does not contain a successful PC.
func (c *PC) VectorsTo(dst *mat.Dense) {
if !c.ok {
panic("stat: use of unsuccessful principal components analysis")
}
if dst.IsEmpty() {
dst.ReuseAs(c.d, min(c.n, c.d))
} else {
if d, n := dst.Dims(); d != c.d || n != min(c.n, c.d) {
panic(mat.ErrShape)
}
}
c.svd.VTo(dst)
}
// VarsTo returns the column variances of the principal component scores,
// b * vecs, where b is a matrix with centered columns. Variances are returned
// in descending order.
// If dst is not nil it is used to store the variances and returned.
// Vars will panic if the receiver has not successfully performed a principal
// components analysis or dst is not nil and the length of dst is not min(n, d).
func (c *PC) VarsTo(dst []float64) []float64 {
if !c.ok {
panic("stat: use of unsuccessful principal components analysis")
}
if dst != nil && len(dst) != min(c.n, c.d) {
panic("stat: length of slice does not match analysis")
}
dst = c.svd.Values(dst)
var f float64
if c.weights == nil {
f = 1 / float64(c.n-1)
} else {
f = 1 / (floats.Sum(c.weights) - 1)
}
for i, v := range dst {
dst[i] = f * v * v
}
return dst
}
// CC is a type for computing the canonical correlations of a pair of matrices.
// The results of the canonical correlation analysis are only valid
// if the call to CanonicalCorrelations was successful.
type CC struct {
// n is the number of observations used to
// construct the canonical correlations.
n int
// xd and yd are used for size checks.
xd, yd int
x, y, c *mat.SVD
ok bool
}
// CanonicalCorrelations performs a canonical correlation analysis of the
// input data x and y, columns of which should be interpretable as two sets
// of measurements on the same observations (rows). These observations are
// optionally weighted by weights. The result of the analysis is stored in
// the receiver if the analysis is successful.
//
// Canonical correlation analysis finds associations between two sets of
// variables on the same observations by finding linear combinations of the two
// sphered datasets that maximize the correlation between them.
//
// Some notation: let Xc and Yc denote the centered input data matrices x
// and y (column means subtracted from each column), let Sx and Sy denote the
// sample covariance matrices within x and y respectively, and let Sxy denote
// the covariance matrix between x and y. The sphered data can then be expressed
// as Xc * Sx^{-1/2} and Yc * Sy^{-1/2} respectively, and the correlation matrix
// between the sphered data is called the canonical correlation matrix,
// Sx^{-1/2} * Sxy * Sy^{-1/2}. In cases where S^{-1/2} is ambiguous for some
// covariance matrix S, S^{-1/2} is taken to be E * D^{-1/2} * Eᵀ where S can
// be eigendecomposed as S = E * D * Eᵀ.
//
// The canonical correlations are the correlations between the corresponding
// pairs of canonical variables and can be obtained with c.Corrs(). Canonical
// variables can be obtained by projecting the sphered data into the left and
// right eigenvectors of the canonical correlation matrix, and these
// eigenvectors can be obtained with c.Left(m, true) and c.Right(m, true)
// respectively. The canonical variables can also be obtained directly from the
// centered raw data by using the back-transformed eigenvectors which can be
// obtained with c.Left(m, false) and c.Right(m, false) respectively.
//
// The first pair of left and right eigenvectors of the canonical correlation
// matrix can be interpreted as directions into which the respective sphered
// data can be projected such that the correlation between the two projections
// is maximized. The second pair and onwards solve the same optimization but
// under the constraint that they are uncorrelated (orthogonal in sphered space)
// to previous projections.
//
// CanonicalCorrelations will panic if the inputs x and y do not have the same
// number of rows.
//
// The slice weights is used to weight the observations. If weights is nil, each
// weight is considered to have a value of one, otherwise the length of weights
// must match the number of observations (rows of both x and y) or
// CanonicalCorrelations will panic.
//
// More details can be found at
// https://en.wikipedia.org/wiki/Canonical_correlation
// or in Chapter 3 of
// Koch, Inge. Analysis of multivariate and high-dimensional data.
// Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939
func (c *CC) CanonicalCorrelations(x, y mat.Matrix, weights []float64) error {
var yn int
c.n, c.xd = x.Dims()
yn, c.yd = y.Dims()
if c.n != yn {
panic("stat: unequal number of observations")
}
if weights != nil && len(weights) != c.n {
panic("stat: len(weights) != observations")
}
// Center and factorize x and y.
c.x, c.ok = svdFactorizeCentered(c.x, x, weights)
if !c.ok {
return errors.New("stat: failed to factorize x")
}
c.y, c.ok = svdFactorizeCentered(c.y, y, weights)
if !c.ok {
return errors.New("stat: failed to factorize y")
}
var xu, xv, yu, yv mat.Dense
c.x.UTo(&xu)
c.x.VTo(&xv)
c.y.UTo(&yu)
c.y.VTo(&yv)
// Calculate and factorise the canonical correlation matrix.
var ccor mat.Dense
ccor.Product(&xv, xu.T(), &yu, yv.T())
if c.c == nil {
c.c = &mat.SVD{}
}
c.ok = c.c.Factorize(&ccor, mat.SVDThin)
if !c.ok {
return errors.New("stat: failed to factorize ccor")
}
return nil
}
// CorrsTo returns the canonical correlations, using dst if it is not nil.
// If dst is not nil and len(dst) does not match the number of columns in
// the y input matrix, Corrs will panic.
func (c *CC) CorrsTo(dst []float64) []float64 {
if !c.ok {
panic("stat: canonical correlations missing or invalid")
}
if dst != nil && len(dst) != c.yd {
panic("stat: length of destination does not match input dimension")
}
return c.c.Values(dst)
}
// LeftTo returns the left eigenvectors of the canonical correlation matrix if
// spheredSpace is true. If spheredSpace is false it returns these eigenvectors
// back-transformed to the original data space.
//
// If dst is empty, LeftTo will resize dst to be xd×yd. When dst is
// non-empty, LeftTo will panic if dst is not xd×yd. LeftTo will also
// panic if the receiver does not contain a successful CC.
func (c *CC) LeftTo(dst *mat.Dense, spheredSpace bool) {
if !c.ok || c.n < 2 {
panic("stat: canonical correlations missing or invalid")
}
if dst.IsEmpty() {
dst.ReuseAs(c.xd, c.yd)
} else {
if d, n := dst.Dims(); d != c.xd || n != c.yd {
panic(mat.ErrShape)
}
}
c.c.UTo(dst)
if spheredSpace {
return
}
xs := c.x.Values(nil)
xv := &mat.Dense{}
c.x.VTo(xv)
scaleColsReciSqrt(xv, xs)
dst.Product(xv, xv.T(), dst)
dst.Scale(math.Sqrt(float64(c.n-1)), dst)
}
// RightTo returns the right eigenvectors of the canonical correlation matrix if
// spheredSpace is true. If spheredSpace is false it returns these eigenvectors
// back-transformed to the original data space.
//
// If dst is empty, RightTo will resize dst to be yd×yd. When dst is
// non-empty, RightTo will panic if dst is not yd×yd. RightTo will also
// panic if the receiver does not contain a successful CC.
func (c *CC) RightTo(dst *mat.Dense, spheredSpace bool) {
if !c.ok || c.n < 2 {
panic("stat: canonical correlations missing or invalid")
}
if dst.IsEmpty() {
dst.ReuseAs(c.yd, c.yd)
} else {
if d, n := dst.Dims(); d != c.yd || n != c.yd {
panic(mat.ErrShape)
}
}
c.c.VTo(dst)
if spheredSpace {
return
}
ys := c.y.Values(nil)
yv := &mat.Dense{}
c.y.VTo(yv)
scaleColsReciSqrt(yv, ys)
dst.Product(yv, yv.T(), dst)
dst.Scale(math.Sqrt(float64(c.n-1)), dst)
}
func svdFactorizeCentered(work *mat.SVD, m mat.Matrix, weights []float64) (svd *mat.SVD, ok bool) {
n, d := m.Dims()
centered := mat.NewDense(n, d, nil)
col := make([]float64, n)
for j := 0; j < d; j++ {
mat.Col(col, j, m)
floats.AddConst(-Mean(col, weights), col)
centered.SetCol(j, col)
}
for i, w := range weights {
floats.Scale(math.Sqrt(w), centered.RawRowView(i))
}
if work == nil {
work = &mat.SVD{}
}
ok = work.Factorize(centered, mat.SVDThin)
return work, ok
}
// scaleColsReciSqrt scales the columns of cols
// by the reciprocal square-root of vals.
func scaleColsReciSqrt(cols *mat.Dense, vals []float64) {
if cols == nil {
panic("stat: input nil")
}
n, d := cols.Dims()
if len(vals) != d {
panic("stat: input length mismatch")
}
col := make([]float64, n)
for j := 0; j < d; j++ {
mat.Col(col, j, cols)
floats.Scale(math.Sqrt(1/vals[j]), col)
cols.SetCol(j, col)
}
}
|