1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat_test
import (
"fmt"
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/integrate"
"gonum.org/v1/gonum/stat"
)
func ExampleROC_weighted() {
y := []float64{0, 3, 5, 6, 7.5, 8}
classes := []bool{false, true, false, true, true, true}
weights := []float64{4, 1, 6, 3, 2, 2}
tpr, fpr, _ := stat.ROC(nil, y, classes, weights)
fmt.Printf("true positive rate: %v\n", tpr)
fmt.Printf("false positive rate: %v\n", fpr)
// Output:
// true positive rate: [0 0.25 0.5 0.875 0.875 1 1]
// false positive rate: [0 0 0 0 0.6 0.6 1]
}
func ExampleROC_unweighted() {
y := []float64{0, 3, 5, 6, 7.5, 8}
classes := []bool{false, true, false, true, true, true}
tpr, fpr, _ := stat.ROC(nil, y, classes, nil)
fmt.Printf("true positive rate: %v\n", tpr)
fmt.Printf("false positive rate: %v\n", fpr)
// Output:
// true positive rate: [0 0.25 0.5 0.75 0.75 1 1]
// false positive rate: [0 0 0 0 0.5 0.5 1]
}
func ExampleROC_threshold() {
y := []float64{0.1, 0.4, 0.35, 0.8}
classes := []bool{false, false, true, true}
stat.SortWeightedLabeled(y, classes, nil)
tpr, fpr, thresh := stat.ROC(nil, y, classes, nil)
fmt.Printf("true positive rate: %v\n", tpr)
fmt.Printf("false positive rate: %v\n", fpr)
fmt.Printf("cutoff thresholds: %v\n", thresh)
// Output:
// true positive rate: [0 0.5 0.5 1 1]
// false positive rate: [0 0 0.5 0.5 1]
// cutoff thresholds: [+Inf 0.8 0.4 0.35 0.1]
}
func ExampleROC_unsorted() {
y := []float64{8, 7.5, 6, 5, 3, 0}
classes := []bool{true, true, true, false, true, false}
weights := []float64{2, 2, 3, 6, 1, 4}
stat.SortWeightedLabeled(y, classes, weights)
tpr, fpr, _ := stat.ROC(nil, y, classes, weights)
fmt.Printf("true positive rate: %v\n", tpr)
fmt.Printf("false positive rate: %v\n", fpr)
// Output:
// true positive rate: [0 0.25 0.5 0.875 0.875 1 1]
// false positive rate: [0 0 0 0 0.6 0.6 1]
}
func ExampleROC_knownCutoffs() {
y := []float64{8, 7.5, 6, 5, 3, 0}
classes := []bool{true, true, true, false, true, false}
weights := []float64{2, 2, 3, 6, 1, 4}
cutoffs := []float64{-1, 3, 4}
stat.SortWeightedLabeled(y, classes, weights)
tpr, fpr, _ := stat.ROC(cutoffs, y, classes, weights)
fmt.Printf("true positive rate: %v\n", tpr)
fmt.Printf("false positive rate: %v\n", fpr)
// Output:
// true positive rate: [0.875 1 1]
// false positive rate: [0.6 0.6 1]
}
func ExampleROC_equallySpacedCutoffs() {
y := []float64{8, 7.5, 6, 5, 3, 0}
classes := []bool{true, true, true, false, true, true}
weights := []float64{2, 2, 3, 6, 1, 4}
n := 9
stat.SortWeightedLabeled(y, classes, weights)
cutoffs := make([]float64, n)
floats.Span(cutoffs, math.Nextafter(y[0], y[0]-1), y[len(y)-1])
tpr, fpr, _ := stat.ROC(cutoffs, y, classes, weights)
fmt.Printf("true positive rate: %.3v\n", tpr)
fmt.Printf("false positive rate: %.3v\n", fpr)
// Output:
// true positive rate: [0.167 0.333 0.583 0.583 0.583 0.667 0.667 0.667 1]
// false positive rate: [0 0 0 1 1 1 1 1 1]
}
func ExampleROC_aUC_unweighted() {
y := []float64{0.1, 0.35, 0.4, 0.8}
classes := []bool{true, false, true, false}
tpr, fpr, _ := stat.ROC(nil, y, classes, nil)
// Compute Area Under Curve.
auc := integrate.Trapezoidal(fpr, tpr)
fmt.Printf("true positive rate: %v\n", tpr)
fmt.Printf("false positive rate: %v\n", fpr)
fmt.Printf("auc: %v\n", auc)
// Output:
// true positive rate: [0 0 0.5 0.5 1]
// false positive rate: [0 0.5 0.5 1 1]
// auc: 0.25
}
func ExampleROC_aUC_weighted() {
y := []float64{0.1, 0.35, 0.4, 0.8}
classes := []bool{true, false, true, false}
weights := []float64{1, 2, 2, 1}
tpr, fpr, _ := stat.ROC(nil, y, classes, weights)
// Compute Area Under Curve.
auc := integrate.Trapezoidal(fpr, tpr)
fmt.Printf("auc: %f\n", auc)
// Output:
// auc: 0.444444
}
func ExampleTOC() {
classes := []bool{
false, false, false, false, false, false,
false, false, false, false, false, false,
false, false, true, true, true, true,
true, true, true, false, false, true,
false, true, false, false, true, false,
}
min, ntp, max := stat.TOC(classes, nil)
fmt.Printf("minimum bound: %v\n", min)
fmt.Printf("TOC: %v\n", ntp)
fmt.Printf("maximum bound: %v\n", max)
// Output:
// minimum bound: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10]
// TOC: [0 0 1 1 1 2 2 3 3 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10]
// maximum bound: [0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10]
}
func ExampleTOC_unsorted() {
y := []float64{8, 7.5, 6, 5, 3, 0}
classes := []bool{true, false, true, false, false, false}
weights := []float64{4, 1, 6, 3, 2, 2}
stat.SortWeightedLabeled(y, classes, weights)
min, ntp, max := stat.TOC(classes, weights)
fmt.Printf("minimum bound: %v\n", min)
fmt.Printf("TOC: %v\n", ntp)
fmt.Printf("maximum bound: %v\n", max)
// Output:
// minimum bound: [0 0 0 3 6 8 10]
// TOC: [0 4 4 10 10 10 10]
// maximum bound: [0 4 5 10 10 10 10]
}
func ExampleTOC_aUC_unweighted() {
classes := []bool{true, false, true, false}
_, ntp, _ := stat.TOC(classes, nil)
pos := ntp[len(ntp)-1]
base := float64(len(classes)) - pos
// Compute the area under ntp and under the
// minimum bound.
x := floats.Span(make([]float64, len(classes)+1), 0, float64(len(classes)))
aucNTP := integrate.Trapezoidal(x, ntp)
aucMin := pos * pos / 2
// Calculate the area under the curve
// within the bounding parallelogram.
auc := aucNTP - aucMin
// Calculate the area within the bounding
// parallelogram.
par := pos * base
// The AUC is the ratio of the area under
// the curve within the bounding parallelogram
// and the total parallelogram bound.
auc /= par
fmt.Printf("number of true positives: %v\n", ntp)
fmt.Printf("auc: %v\n", auc)
// Output:
// number of true positives: [0 0 1 1 2]
// auc: 0.25
}
func ExampleTOC_aUC_weighted() {
classes := []bool{true, false, true, false}
weights := []float64{1, 2, 2, 1}
min, ntp, max := stat.TOC(classes, weights)
// Compute the area under ntp and under the
// minimum and maximum bounds.
x := make([]float64, len(classes)+1)
floats.CumSum(x[1:], weights)
aucNTP := integrate.Trapezoidal(x, ntp)
aucMin := integrate.Trapezoidal(x, min)
aucMax := integrate.Trapezoidal(x, max)
// Calculate the area under the curve
// within the bounding parallelogram.
auc := aucNTP - aucMin
// Calculate the area within the bounding
// parallelogram.
par := aucMax - aucMin
// The AUC is the ratio of the area under
// the curve within the bounding parallelogram
// and the total parallelogram bound.
auc /= par
fmt.Printf("number of true positives: %v\n", ntp)
fmt.Printf("auc: %f\n", auc)
// Output:
// number of true positives: [0 0 2 2 3]
// auc: 0.444444
}
|