1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
|
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"math"
"sort"
"gonum.org/v1/gonum/floats"
)
// CumulantKind specifies the behavior for calculating the empirical CDF or Quantile
type CumulantKind int
// List of supported CumulantKind values for the Quantile function.
// Constant values should match the R nomenclature. See
// https://en.wikipedia.org/wiki/Quantile#Estimating_the_quantiles_of_a_population
const (
// Empirical treats the distribution as the actual empirical distribution.
Empirical CumulantKind = 1
// LinInterp linearly interpolates the empirical distribution between sample values, with a flat extrapolation.
LinInterp CumulantKind = 4
)
// bhattacharyyaCoeff computes the Bhattacharyya Coefficient for probability distributions given by:
//
// \sum_i \sqrt{p_i q_i}
//
// It is assumed that p and q have equal length.
func bhattacharyyaCoeff(p, q []float64) float64 {
var bc float64
for i, a := range p {
bc += math.Sqrt(a * q[i])
}
return bc
}
// Bhattacharyya computes the distance between the probability distributions p and q given by:
//
// -\ln ( \sum_i \sqrt{p_i q_i} )
//
// The lengths of p and q must be equal. It is assumed that p and q sum to 1.
func Bhattacharyya(p, q []float64) float64 {
if len(p) != len(q) {
panic("stat: slice length mismatch")
}
bc := bhattacharyyaCoeff(p, q)
return -math.Log(bc)
}
// CDF returns the empirical cumulative distribution function value of x, that is
// the fraction of the samples less than or equal to q. The
// exact behavior is determined by the CumulantKind. CDF is theoretically
// the inverse of the Quantile function, though it may not be the actual inverse
// for all values q and CumulantKinds.
//
// The x data must be sorted in increasing order. If weights is nil then all
// of the weights are 1. If weights is not nil, then len(x) must equal len(weights).
// CDF will panic if the length of x is zero.
//
// CumulantKind behaviors:
// - Empirical: Returns the lowest fraction for which q is greater than or equal
// to that fraction of samples
func CDF(q float64, c CumulantKind, x, weights []float64) float64 {
if weights != nil && len(x) != len(weights) {
panic("stat: slice length mismatch")
}
if floats.HasNaN(x) {
return math.NaN()
}
if len(x) == 0 {
panic("stat: zero length slice")
}
if !sort.Float64sAreSorted(x) {
panic("x data are not sorted")
}
if q < x[0] {
return 0
}
if q >= x[len(x)-1] {
return 1
}
var sumWeights float64
if weights == nil {
sumWeights = float64(len(x))
} else {
sumWeights = floats.Sum(weights)
}
// Calculate the index
switch c {
case Empirical:
// Find the smallest value that is greater than that percent of the samples
var w float64
for i, v := range x {
if v > q {
return w / sumWeights
}
if weights == nil {
w++
} else {
w += weights[i]
}
}
panic("impossible")
default:
panic("stat: bad cumulant kind")
}
}
// ChiSquare computes the chi-square distance between the observed frequencies 'obs' and
// expected frequencies 'exp' given by:
//
// \sum_i (obs_i-exp_i)^2 / exp_i
//
// The lengths of obs and exp must be equal.
func ChiSquare(obs, exp []float64) float64 {
if len(obs) != len(exp) {
panic("stat: slice length mismatch")
}
var result float64
for i, a := range obs {
b := exp[i]
if a == 0 && b == 0 {
continue
}
result += (a - b) * (a - b) / b
}
return result
}
// CircularMean returns the circular mean of the dataset.
//
// atan2(\sum_i w_i * sin(alpha_i), \sum_i w_i * cos(alpha_i))
//
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
func CircularMean(x, weights []float64) float64 {
if weights != nil && len(x) != len(weights) {
panic("stat: slice length mismatch")
}
var aX, aY float64
if weights != nil {
for i, v := range x {
aX += weights[i] * math.Cos(v)
aY += weights[i] * math.Sin(v)
}
} else {
for _, v := range x {
aX += math.Cos(v)
aY += math.Sin(v)
}
}
return math.Atan2(aY, aX)
}
// Correlation returns the weighted correlation between the samples of x and y
// with the given means.
//
// sum_i {w_i (x_i - meanX) * (y_i - meanY)} / (stdX * stdY)
//
// The lengths of x and y must be equal. If weights is nil then all of the
// weights are 1. If weights is not nil, then len(x) must equal len(weights).
func Correlation(x, y, weights []float64) float64 {
// This is a two-pass corrected implementation. It is an adaptation of the
// algorithm used in the MeanVariance function, which applies a correction
// to the typical two pass approach.
if len(x) != len(y) {
panic("stat: slice length mismatch")
}
xu := Mean(x, weights)
yu := Mean(y, weights)
var (
sxx float64
syy float64
sxy float64
xcompensation float64
ycompensation float64
)
if weights == nil {
for i, xv := range x {
yv := y[i]
xd := xv - xu
yd := yv - yu
sxx += xd * xd
syy += yd * yd
sxy += xd * yd
xcompensation += xd
ycompensation += yd
}
// xcompensation and ycompensation are from Chan, et. al.
// referenced in the MeanVariance function. They are analogous
// to the second term in (1.7) in that paper.
sxx -= xcompensation * xcompensation / float64(len(x))
syy -= ycompensation * ycompensation / float64(len(x))
return (sxy - xcompensation*ycompensation/float64(len(x))) / math.Sqrt(sxx*syy)
}
var sumWeights float64
for i, xv := range x {
w := weights[i]
yv := y[i]
xd := xv - xu
wxd := w * xd
yd := yv - yu
wyd := w * yd
sxx += wxd * xd
syy += wyd * yd
sxy += wxd * yd
xcompensation += wxd
ycompensation += wyd
sumWeights += w
}
// xcompensation and ycompensation are from Chan, et. al.
// referenced in the MeanVariance function. They are analogous
// to the second term in (1.7) in that paper, except they use
// the sumWeights instead of the sample count.
sxx -= xcompensation * xcompensation / sumWeights
syy -= ycompensation * ycompensation / sumWeights
return (sxy - xcompensation*ycompensation/sumWeights) / math.Sqrt(sxx*syy)
}
// Kendall returns the weighted Tau-a Kendall correlation between the
// samples of x and y. The Kendall correlation measures the quantity of
// concordant and discordant pairs of numbers. If weights are specified then
// each pair is weighted by weights[i] * weights[j] and the final sum is
// normalized to stay between -1 and 1.
// The lengths of x and y must be equal. If weights is nil then all of the
// weights are 1. If weights is not nil, then len(x) must equal len(weights).
func Kendall(x, y, weights []float64) float64 {
if len(x) != len(y) {
panic("stat: slice length mismatch")
}
var (
cc float64 // number of concordant pairs
dc float64 // number of discordant pairs
n = len(x)
)
if weights == nil {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
if i == j {
continue
}
if math.Signbit(x[j]-x[i]) == math.Signbit(y[j]-y[i]) {
cc++
} else {
dc++
}
}
}
return (cc - dc) / float64(n*(n-1)/2)
}
var sumWeights float64
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
if i == j {
continue
}
weight := weights[i] * weights[j]
if math.Signbit(x[j]-x[i]) == math.Signbit(y[j]-y[i]) {
cc += weight
} else {
dc += weight
}
sumWeights += weight
}
}
return float64(cc-dc) / sumWeights
}
// Covariance returns the weighted covariance between the samples of x and y.
//
// sum_i {w_i (x_i - meanX) * (y_i - meanY)} / (sum_j {w_j} - 1)
//
// The lengths of x and y must be equal. If weights is nil then all of the
// weights are 1. If weights is not nil, then len(x) must equal len(weights).
func Covariance(x, y, weights []float64) float64 {
// This is a two-pass corrected implementation. It is an adaptation of the
// algorithm used in the MeanVariance function, which applies a correction
// to the typical two pass approach.
if len(x) != len(y) {
panic("stat: slice length mismatch")
}
xu := Mean(x, weights)
yu := Mean(y, weights)
return covarianceMeans(x, y, weights, xu, yu)
}
// covarianceMeans returns the weighted covariance between x and y with the mean
// of x and y already specified. See the documentation of Covariance for more
// information.
func covarianceMeans(x, y, weights []float64, xu, yu float64) float64 {
var (
ss float64
xcompensation float64
ycompensation float64
)
if weights == nil {
for i, xv := range x {
yv := y[i]
xd := xv - xu
yd := yv - yu
ss += xd * yd
xcompensation += xd
ycompensation += yd
}
// xcompensation and ycompensation are from Chan, et. al.
// referenced in the MeanVariance function. They are analogous
// to the second term in (1.7) in that paper.
return (ss - xcompensation*ycompensation/float64(len(x))) / float64(len(x)-1)
}
var sumWeights float64
for i, xv := range x {
w := weights[i]
yv := y[i]
wxd := w * (xv - xu)
yd := (yv - yu)
ss += wxd * yd
xcompensation += wxd
ycompensation += w * yd
sumWeights += w
}
// xcompensation and ycompensation are from Chan, et. al.
// referenced in the MeanVariance function. They are analogous
// to the second term in (1.7) in that paper, except they use
// the sumWeights instead of the sample count.
return (ss - xcompensation*ycompensation/sumWeights) / (sumWeights - 1)
}
// CrossEntropy computes the cross-entropy between the two distributions specified
// in p and q.
func CrossEntropy(p, q []float64) float64 {
if len(p) != len(q) {
panic("stat: slice length mismatch")
}
var ce float64
for i, v := range p {
if v != 0 {
ce -= v * math.Log(q[i])
}
}
return ce
}
// Entropy computes the Shannon entropy of a distribution or the distance between
// two distributions. The natural logarithm is used.
// - sum_i (p_i * log_e(p_i))
func Entropy(p []float64) float64 {
var e float64
for _, v := range p {
if v != 0 { // Entropy needs 0 * log(0) == 0.
e -= v * math.Log(v)
}
}
return e
}
// ExKurtosis returns the population excess kurtosis of the sample.
// The kurtosis is defined by the 4th moment of the mean divided by the squared
// variance. The excess kurtosis subtracts 3.0 so that the excess kurtosis of
// the normal distribution is zero.
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
func ExKurtosis(x, weights []float64) float64 {
mean, std := MeanStdDev(x, weights)
if weights == nil {
var e float64
for _, v := range x {
z := (v - mean) / std
e += z * z * z * z
}
mul, offset := kurtosisCorrection(float64(len(x)))
return e*mul - offset
}
var (
e float64
sumWeights float64
)
for i, v := range x {
z := (v - mean) / std
e += weights[i] * z * z * z * z
sumWeights += weights[i]
}
mul, offset := kurtosisCorrection(sumWeights)
return e*mul - offset
}
// n is the number of samples
// see https://en.wikipedia.org/wiki/Kurtosis
func kurtosisCorrection(n float64) (mul, offset float64) {
return ((n + 1) / (n - 1)) * (n / (n - 2)) * (1 / (n - 3)), 3 * ((n - 1) / (n - 2)) * ((n - 1) / (n - 3))
}
// GeometricMean returns the weighted geometric mean of the dataset
//
// \prod_i {x_i ^ w_i}
//
// This only applies with positive x and positive weights. If weights is nil
// then all of the weights are 1. If weights is not nil, then len(x) must equal
// len(weights).
func GeometricMean(x, weights []float64) float64 {
if weights == nil {
var s float64
for _, v := range x {
s += math.Log(v)
}
s /= float64(len(x))
return math.Exp(s)
}
if len(x) != len(weights) {
panic("stat: slice length mismatch")
}
var (
s float64
sumWeights float64
)
for i, v := range x {
s += weights[i] * math.Log(v)
sumWeights += weights[i]
}
s /= sumWeights
return math.Exp(s)
}
// HarmonicMean returns the weighted harmonic mean of the dataset
//
// \sum_i {w_i} / ( sum_i {w_i / x_i} )
//
// This only applies with positive x and positive weights.
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
func HarmonicMean(x, weights []float64) float64 {
if weights != nil && len(x) != len(weights) {
panic("stat: slice length mismatch")
}
// TODO(btracey): Fix this to make it more efficient and avoid allocation.
// This can be numerically unstable (for example if x is very small).
// W = \sum_i {w_i}
// hm = exp(log(W) - log(\sum_i w_i / x_i))
logs := make([]float64, len(x))
var W float64
for i := range x {
if weights == nil {
logs[i] = -math.Log(x[i])
W++
continue
}
logs[i] = math.Log(weights[i]) - math.Log(x[i])
W += weights[i]
}
// Sum all of the logs
v := floats.LogSumExp(logs) // This computes log(\sum_i { w_i / x_i}).
return math.Exp(math.Log(W) - v)
}
// Hellinger computes the distance between the probability distributions p and q given by:
//
// \sqrt{ 1 - \sum_i \sqrt{p_i q_i} }
//
// The lengths of p and q must be equal. It is assumed that p and q sum to 1.
func Hellinger(p, q []float64) float64 {
if len(p) != len(q) {
panic("stat: slice length mismatch")
}
bc := bhattacharyyaCoeff(p, q)
return math.Sqrt(1 - bc)
}
// Histogram sums up the weighted number of data points in each bin.
// The weight of data point x[i] will be placed into count[j] if
// dividers[j] <= x < dividers[j+1]. The "span" function in the floats package can assist
// with bin creation.
//
// The following conditions on the inputs apply:
// - The count variable must either be nil or have length of one less than dividers.
// - The values in dividers must be sorted (use the sort package).
// - The x values must be sorted.
// - If weights is nil then all of the weights are 1.
// - If weights is not nil, then len(x) must equal len(weights).
func Histogram(count, dividers, x, weights []float64) []float64 {
if weights != nil && len(x) != len(weights) {
panic("stat: slice length mismatch")
}
if count == nil {
count = make([]float64, len(dividers)-1)
}
if len(dividers) < 2 {
panic("histogram: fewer than two dividers")
}
if len(count) != len(dividers)-1 {
panic("histogram: bin count mismatch")
}
if !sort.Float64sAreSorted(dividers) {
panic("histogram: dividers are not sorted")
}
if !sort.Float64sAreSorted(x) {
panic("histogram: x data are not sorted")
}
for i := range count {
count[i] = 0
}
if len(x) == 0 {
return count
}
if x[0] < dividers[0] {
panic("histogram: minimum x value is less than lowest divider")
}
if dividers[len(dividers)-1] <= x[len(x)-1] {
panic("histogram: maximum x value is greater than or equal to highest divider")
}
idx := 0
comp := dividers[idx+1]
if weights == nil {
for _, v := range x {
if v < comp {
// Still in the current bucket.
count[idx]++
continue
}
// Find the next divider where v is less than the divider.
for j := idx + 1; j < len(dividers); j++ {
if v < dividers[j+1] {
idx = j
comp = dividers[j+1]
break
}
}
count[idx]++
}
return count
}
for i, v := range x {
if v < comp {
// Still in the current bucket.
count[idx] += weights[i]
continue
}
// Need to find the next divider where v is less than the divider.
for j := idx + 1; j < len(count); j++ {
if v < dividers[j+1] {
idx = j
comp = dividers[j+1]
break
}
}
count[idx] += weights[i]
}
return count
}
// JensenShannon computes the JensenShannon divergence between the distributions
// p and q. The Jensen-Shannon divergence is defined as
//
// m = 0.5 * (p + q)
// JS(p, q) = 0.5 ( KL(p, m) + KL(q, m) )
//
// Unlike Kullback-Leibler, the Jensen-Shannon distance is symmetric. The value
// is between 0 and ln(2).
func JensenShannon(p, q []float64) float64 {
if len(p) != len(q) {
panic("stat: slice length mismatch")
}
var js float64
for i, v := range p {
qi := q[i]
m := 0.5 * (v + qi)
if v != 0 {
// add kl from p to m
js += 0.5 * v * (math.Log(v) - math.Log(m))
}
if qi != 0 {
// add kl from q to m
js += 0.5 * qi * (math.Log(qi) - math.Log(m))
}
}
return js
}
// KolmogorovSmirnov computes the largest distance between two empirical CDFs.
// Each dataset x and y consists of sample locations and counts, xWeights and
// yWeights, respectively.
//
// x and y may have different lengths, though len(x) must equal len(xWeights), and
// len(y) must equal len(yWeights). Both x and y must be sorted.
//
// Special cases are:
//
// = 0 if len(x) == len(y) == 0
// = 1 if len(x) == 0, len(y) != 0 or len(x) != 0 and len(y) == 0
func KolmogorovSmirnov(x, xWeights, y, yWeights []float64) float64 {
if xWeights != nil && len(x) != len(xWeights) {
panic("stat: slice length mismatch")
}
if yWeights != nil && len(y) != len(yWeights) {
panic("stat: slice length mismatch")
}
if len(x) == 0 || len(y) == 0 {
if len(x) == 0 && len(y) == 0 {
return 0
}
return 1
}
if floats.HasNaN(x) {
return math.NaN()
}
if floats.HasNaN(y) {
return math.NaN()
}
if !sort.Float64sAreSorted(x) {
panic("x data are not sorted")
}
if !sort.Float64sAreSorted(y) {
panic("y data are not sorted")
}
xWeightsNil := xWeights == nil
yWeightsNil := yWeights == nil
var (
maxDist float64
xSum, ySum float64
xCdf, yCdf float64
xIdx, yIdx int
)
if xWeightsNil {
xSum = float64(len(x))
} else {
xSum = floats.Sum(xWeights)
}
if yWeightsNil {
ySum = float64(len(y))
} else {
ySum = floats.Sum(yWeights)
}
xVal := x[0]
yVal := y[0]
// Algorithm description:
// The goal is to find the maximum difference in the empirical CDFs for the
// two datasets. The CDFs are piecewise-constant, and thus the distance
// between the CDFs will only change at the values themselves.
//
// To find the maximum distance, step through the data in ascending order
// of value between the two datasets. At each step, compute the empirical CDF
// and compare the local distance with the maximum distance.
// Due to some corner cases, equal data entries must be tallied simultaneously.
for {
switch {
case xVal < yVal:
xVal, xCdf, xIdx = updateKS(xIdx, xCdf, xSum, x, xWeights, xWeightsNil)
case yVal < xVal:
yVal, yCdf, yIdx = updateKS(yIdx, yCdf, ySum, y, yWeights, yWeightsNil)
case xVal == yVal:
newX := x[xIdx]
newY := y[yIdx]
if newX < newY {
xVal, xCdf, xIdx = updateKS(xIdx, xCdf, xSum, x, xWeights, xWeightsNil)
} else if newY < newX {
yVal, yCdf, yIdx = updateKS(yIdx, yCdf, ySum, y, yWeights, yWeightsNil)
} else {
// Update them both, they'll be equal next time and the right
// thing will happen.
xVal, xCdf, xIdx = updateKS(xIdx, xCdf, xSum, x, xWeights, xWeightsNil)
yVal, yCdf, yIdx = updateKS(yIdx, yCdf, ySum, y, yWeights, yWeightsNil)
}
default:
panic("unreachable")
}
dist := math.Abs(xCdf - yCdf)
if dist > maxDist {
maxDist = dist
}
// Both xCdf and yCdf will equal 1 at the end, so if we have reached the
// end of either sample list, the distance is as large as it can be.
if xIdx == len(x) || yIdx == len(y) {
return maxDist
}
}
}
// updateKS gets the next data point from one of the set. In doing so, it combines
// the weight of all the data points of equal value. Upon return, val is the new
// value of the data set, newCdf is the total combined CDF up until this point,
// and newIdx is the index of the next location in that sample to examine.
func updateKS(idx int, cdf, sum float64, values, weights []float64, isNil bool) (val, newCdf float64, newIdx int) {
// Sum up all the weights of consecutive values that are equal.
if isNil {
newCdf = cdf + 1/sum
} else {
newCdf = cdf + weights[idx]/sum
}
newIdx = idx + 1
for {
if newIdx == len(values) {
return values[newIdx-1], newCdf, newIdx
}
if values[newIdx-1] != values[newIdx] {
return values[newIdx], newCdf, newIdx
}
if isNil {
newCdf += 1 / sum
} else {
newCdf += weights[newIdx] / sum
}
newIdx++
}
}
// KullbackLeibler computes the Kullback-Leibler distance between the
// distributions p and q. The natural logarithm is used.
//
// sum_i(p_i * log(p_i / q_i))
//
// Note that the Kullback-Leibler distance is not symmetric;
// KullbackLeibler(p,q) != KullbackLeibler(q,p)
func KullbackLeibler(p, q []float64) float64 {
if len(p) != len(q) {
panic("stat: slice length mismatch")
}
var kl float64
for i, v := range p {
if v != 0 { // Entropy needs 0 * log(0) == 0.
kl += v * (math.Log(v) - math.Log(q[i]))
}
}
return kl
}
// LinearRegression computes the best-fit line
//
// y = alpha + beta*x
//
// to the data in x and y with the given weights. If origin is true, the
// regression is forced to pass through the origin.
//
// Specifically, LinearRegression computes the values of alpha and
// beta such that the total residual
//
// \sum_i w[i]*(y[i] - alpha - beta*x[i])^2
//
// is minimized. If origin is true, then alpha is forced to be zero.
//
// The lengths of x and y must be equal. If weights is nil then all of the
// weights are 1. If weights is not nil, then len(x) must equal len(weights).
func LinearRegression(x, y, weights []float64, origin bool) (alpha, beta float64) {
if len(x) != len(y) {
panic("stat: slice length mismatch")
}
if weights != nil && len(weights) != len(x) {
panic("stat: slice length mismatch")
}
w := 1.0
if origin {
var x2Sum, xySum float64
for i, xi := range x {
if weights != nil {
w = weights[i]
}
yi := y[i]
xySum += w * xi * yi
x2Sum += w * xi * xi
}
beta = xySum / x2Sum
return 0, beta
}
xu, xv := MeanVariance(x, weights)
yu := Mean(y, weights)
cov := covarianceMeans(x, y, weights, xu, yu)
beta = cov / xv
alpha = yu - beta*xu
return alpha, beta
}
// RSquared returns the coefficient of determination defined as
//
// R^2 = 1 - \sum_i w[i]*(y[i] - alpha - beta*x[i])^2 / \sum_i w[i]*(y[i] - mean(y))^2
//
// for the line
//
// y = alpha + beta*x
//
// and the data in x and y with the given weights.
//
// The lengths of x and y must be equal. If weights is nil then all of the
// weights are 1. If weights is not nil, then len(x) must equal len(weights).
func RSquared(x, y, weights []float64, alpha, beta float64) float64 {
if len(x) != len(y) {
panic("stat: slice length mismatch")
}
if weights != nil && len(weights) != len(x) {
panic("stat: slice length mismatch")
}
w := 1.0
yMean := Mean(y, weights)
var res, tot, d float64
for i, xi := range x {
if weights != nil {
w = weights[i]
}
yi := y[i]
fi := alpha + beta*xi
d = yi - fi
res += w * d * d
d = yi - yMean
tot += w * d * d
}
return 1 - res/tot
}
// RSquaredFrom returns the coefficient of determination defined as
//
// R^2 = 1 - \sum_i w[i]*(estimate[i] - value[i])^2 / \sum_i w[i]*(value[i] - mean(values))^2
//
// and the data in estimates and values with the given weights.
//
// The lengths of estimates and values must be equal. If weights is nil then
// all of the weights are 1. If weights is not nil, then len(values) must
// equal len(weights).
func RSquaredFrom(estimates, values, weights []float64) float64 {
if len(estimates) != len(values) {
panic("stat: slice length mismatch")
}
if weights != nil && len(weights) != len(values) {
panic("stat: slice length mismatch")
}
w := 1.0
mean := Mean(values, weights)
var res, tot, d float64
for i, val := range values {
if weights != nil {
w = weights[i]
}
d = val - estimates[i]
res += w * d * d
d = val - mean
tot += w * d * d
}
return 1 - res/tot
}
// RNoughtSquared returns the coefficient of determination defined as
//
// R₀^2 = \sum_i w[i]*(beta*x[i])^2 / \sum_i w[i]*y[i]^2
//
// for the line
//
// y = beta*x
//
// and the data in x and y with the given weights. RNoughtSquared should
// only be used for best-fit lines regressed through the origin.
//
// The lengths of x and y must be equal. If weights is nil then all of the
// weights are 1. If weights is not nil, then len(x) must equal len(weights).
func RNoughtSquared(x, y, weights []float64, beta float64) float64 {
if len(x) != len(y) {
panic("stat: slice length mismatch")
}
if weights != nil && len(weights) != len(x) {
panic("stat: slice length mismatch")
}
w := 1.0
var ssr, tot float64
for i, xi := range x {
if weights != nil {
w = weights[i]
}
fi := beta * xi
ssr += w * fi * fi
yi := y[i]
tot += w * yi * yi
}
return ssr / tot
}
// Mean computes the weighted mean of the data set.
//
// sum_i {w_i * x_i} / sum_i {w_i}
//
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
func Mean(x, weights []float64) float64 {
if weights == nil {
return floats.Sum(x) / float64(len(x))
}
if len(x) != len(weights) {
panic("stat: slice length mismatch")
}
var (
sumValues float64
sumWeights float64
)
for i, w := range weights {
sumValues += w * x[i]
sumWeights += w
}
return sumValues / sumWeights
}
// Mode returns the most common value in the dataset specified by x and the
// given weights. Strict float64 equality is used when comparing values, so users
// should take caution. If several values are the mode, any of them may be returned.
func Mode(x, weights []float64) (val float64, count float64) {
if weights != nil && len(x) != len(weights) {
panic("stat: slice length mismatch")
}
if len(x) == 0 {
return 0, 0
}
m := make(map[float64]float64)
if weights == nil {
for _, v := range x {
m[v]++
}
} else {
for i, v := range x {
m[v] += weights[i]
}
}
var (
maxCount float64
max float64
)
for val, count := range m {
if count > maxCount {
maxCount = count
max = val
}
}
return max, maxCount
}
// BivariateMoment computes the weighted mixed moment between the samples x and y.
//
// E[(x - μ_x)^r*(y - μ_y)^s]
//
// No degrees of freedom correction is done.
// The lengths of x and y must be equal. If weights is nil then all of the
// weights are 1. If weights is not nil, then len(x) must equal len(weights).
func BivariateMoment(r, s float64, x, y, weights []float64) float64 {
meanX := Mean(x, weights)
meanY := Mean(y, weights)
if len(x) != len(y) {
panic("stat: slice length mismatch")
}
if weights == nil {
var m float64
for i, vx := range x {
vy := y[i]
m += math.Pow(vx-meanX, r) * math.Pow(vy-meanY, s)
}
return m / float64(len(x))
}
if len(weights) != len(x) {
panic("stat: slice length mismatch")
}
var (
m float64
sumWeights float64
)
for i, vx := range x {
vy := y[i]
w := weights[i]
m += w * math.Pow(vx-meanX, r) * math.Pow(vy-meanY, s)
sumWeights += w
}
return m / sumWeights
}
// Moment computes the weighted n^th moment of the samples,
//
// E[(x - μ)^N]
//
// No degrees of freedom correction is done.
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
func Moment(moment float64, x, weights []float64) float64 {
// This also checks that x and weights have the same length.
mean := Mean(x, weights)
if weights == nil {
var m float64
for _, v := range x {
m += math.Pow(v-mean, moment)
}
return m / float64(len(x))
}
var (
m float64
sumWeights float64
)
for i, v := range x {
w := weights[i]
m += w * math.Pow(v-mean, moment)
sumWeights += w
}
return m / sumWeights
}
// MomentAbout computes the weighted n^th weighted moment of the samples about
// the given mean \mu,
//
// E[(x - μ)^N]
//
// No degrees of freedom correction is done.
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
func MomentAbout(moment float64, x []float64, mean float64, weights []float64) float64 {
if weights == nil {
var m float64
for _, v := range x {
m += math.Pow(v-mean, moment)
}
m /= float64(len(x))
return m
}
if len(weights) != len(x) {
panic("stat: slice length mismatch")
}
var (
m float64
sumWeights float64
)
for i, v := range x {
m += weights[i] * math.Pow(v-mean, moment)
sumWeights += weights[i]
}
return m / sumWeights
}
// Quantile returns the sample of x such that x is greater than or
// equal to the fraction p of samples. The exact behavior is determined by the
// CumulantKind, and p should be a number between 0 and 1. Quantile is theoretically
// the inverse of the CDF function, though it may not be the actual inverse
// for all values p and CumulantKinds.
//
// The x data must be sorted in increasing order. If weights is nil then all
// of the weights are 1. If weights is not nil, then len(x) must equal len(weights).
// Quantile will panic if the length of x is zero.
//
// CumulantKind behaviors:
// - Empirical: Returns the lowest value q for which q is greater than or equal
// to the fraction p of samples
// - LinInterp: Returns the linearly interpolated value
func Quantile(p float64, c CumulantKind, x, weights []float64) float64 {
if !(p >= 0 && p <= 1) {
panic("stat: percentile out of bounds")
}
if weights != nil && len(x) != len(weights) {
panic("stat: slice length mismatch")
}
if len(x) == 0 {
panic("stat: zero length slice")
}
if floats.HasNaN(x) {
return math.NaN() // This is needed because the algorithm breaks otherwise.
}
if !sort.Float64sAreSorted(x) {
panic("x data are not sorted")
}
var sumWeights float64
if weights == nil {
sumWeights = float64(len(x))
} else {
sumWeights = floats.Sum(weights)
}
switch c {
case Empirical:
return empiricalQuantile(p, x, weights, sumWeights)
case LinInterp:
return linInterpQuantile(p, x, weights, sumWeights)
default:
panic("stat: bad cumulant kind")
}
}
func empiricalQuantile(p float64, x, weights []float64, sumWeights float64) float64 {
var cumsum float64
fidx := p * sumWeights
for i := range x {
if weights == nil {
cumsum++
} else {
cumsum += weights[i]
}
if cumsum >= fidx {
return x[i]
}
}
panic("impossible")
}
func linInterpQuantile(p float64, x, weights []float64, sumWeights float64) float64 {
var cumsum float64
fidx := p * sumWeights
for i := range x {
if weights == nil {
cumsum++
} else {
cumsum += weights[i]
}
if cumsum >= fidx {
if i == 0 {
return x[0]
}
t := cumsum - fidx
if weights != nil {
t /= weights[i]
}
return t*x[i-1] + (1-t)*x[i]
}
}
panic("impossible")
}
// Skew computes the skewness of the sample data.
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
// When weights sum to 1 or less, a biased variance estimator should be used.
func Skew(x, weights []float64) float64 {
mean, std := MeanStdDev(x, weights)
if weights == nil {
var s float64
for _, v := range x {
z := (v - mean) / std
s += z * z * z
}
return s * skewCorrection(float64(len(x)))
}
var (
s float64
sumWeights float64
)
for i, v := range x {
z := (v - mean) / std
s += weights[i] * z * z * z
sumWeights += weights[i]
}
return s * skewCorrection(sumWeights)
}
// From: http://www.amstat.org/publications/jse/v19n2/doane.pdf page 7
func skewCorrection(n float64) float64 {
return (n / (n - 1)) * (1 / (n - 2))
}
// SortWeighted rearranges the data in x along with their corresponding
// weights so that the x data are sorted. The data is sorted in place.
// Weights may be nil, but if weights is non-nil then it must have the same
// length as x.
func SortWeighted(x, weights []float64) {
if weights == nil {
sort.Float64s(x)
return
}
if len(x) != len(weights) {
panic("stat: slice length mismatch")
}
sort.Sort(weightSorter{
x: x,
w: weights,
})
}
type weightSorter struct {
x []float64
w []float64
}
func (w weightSorter) Len() int { return len(w.x) }
func (w weightSorter) Less(i, j int) bool { return w.x[i] < w.x[j] }
func (w weightSorter) Swap(i, j int) {
w.x[i], w.x[j] = w.x[j], w.x[i]
w.w[i], w.w[j] = w.w[j], w.w[i]
}
// SortWeightedLabeled rearranges the data in x along with their
// corresponding weights and boolean labels so that the x data are sorted.
// The data is sorted in place. Weights and labels may be nil, if either
// is non-nil it must have the same length as x.
func SortWeightedLabeled(x []float64, labels []bool, weights []float64) {
if labels == nil {
SortWeighted(x, weights)
return
}
if weights == nil {
if len(x) != len(labels) {
panic("stat: slice length mismatch")
}
sort.Sort(labelSorter{
x: x,
l: labels,
})
return
}
if len(x) != len(labels) || len(x) != len(weights) {
panic("stat: slice length mismatch")
}
sort.Sort(weightLabelSorter{
x: x,
l: labels,
w: weights,
})
}
type labelSorter struct {
x []float64
l []bool
}
func (a labelSorter) Len() int { return len(a.x) }
func (a labelSorter) Less(i, j int) bool { return a.x[i] < a.x[j] }
func (a labelSorter) Swap(i, j int) {
a.x[i], a.x[j] = a.x[j], a.x[i]
a.l[i], a.l[j] = a.l[j], a.l[i]
}
type weightLabelSorter struct {
x []float64
l []bool
w []float64
}
func (a weightLabelSorter) Len() int { return len(a.x) }
func (a weightLabelSorter) Less(i, j int) bool { return a.x[i] < a.x[j] }
func (a weightLabelSorter) Swap(i, j int) {
a.x[i], a.x[j] = a.x[j], a.x[i]
a.l[i], a.l[j] = a.l[j], a.l[i]
a.w[i], a.w[j] = a.w[j], a.w[i]
}
// StdDev returns the sample standard deviation.
func StdDev(x, weights []float64) float64 {
_, std := MeanStdDev(x, weights)
return std
}
// MeanStdDev returns the sample mean and unbiased standard deviation
// When weights sum to 1 or less, a biased variance estimator should be used.
func MeanStdDev(x, weights []float64) (mean, std float64) {
mean, variance := MeanVariance(x, weights)
return mean, math.Sqrt(variance)
}
// StdErr returns the standard error in the mean with the given values.
func StdErr(std, sampleSize float64) float64 {
return std / math.Sqrt(sampleSize)
}
// StdScore returns the standard score (a.k.a. z-score, z-value) for the value x
// with the given mean and standard deviation, i.e.
//
// (x - mean) / std
func StdScore(x, mean, std float64) float64 {
return (x - mean) / std
}
// Variance computes the unbiased weighted sample variance:
//
// \sum_i w_i (x_i - mean)^2 / (sum_i w_i - 1)
//
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
// When weights sum to 1 or less, a biased variance estimator should be used.
func Variance(x, weights []float64) float64 {
_, variance := MeanVariance(x, weights)
return variance
}
// MeanVariance computes the sample mean and unbiased variance, where the mean and variance are
//
// \sum_i w_i * x_i / (sum_i w_i)
// \sum_i w_i (x_i - mean)^2 / (sum_i w_i - 1)
//
// respectively.
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
// When weights sum to 1 or less, a biased variance estimator should be used.
func MeanVariance(x, weights []float64) (mean, variance float64) {
var (
unnormalisedVariance float64
sumWeights float64
)
mean, unnormalisedVariance, sumWeights = meanUnnormalisedVarianceSumWeights(x, weights)
return mean, unnormalisedVariance / (sumWeights - 1)
}
// PopMeanVariance computes the sample mean and biased variance (also known as
// "population variance"), where the mean and variance are
//
// \sum_i w_i * x_i / (sum_i w_i)
// \sum_i w_i (x_i - mean)^2 / (sum_i w_i)
//
// respectively.
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
func PopMeanVariance(x, weights []float64) (mean, variance float64) {
var (
unnormalisedVariance float64
sumWeights float64
)
mean, unnormalisedVariance, sumWeights = meanUnnormalisedVarianceSumWeights(x, weights)
return mean, unnormalisedVariance / sumWeights
}
// PopMeanStdDev returns the sample mean and biased standard deviation
// (also known as "population standard deviation").
func PopMeanStdDev(x, weights []float64) (mean, std float64) {
mean, variance := PopMeanVariance(x, weights)
return mean, math.Sqrt(variance)
}
// PopStdDev returns the population standard deviation, i.e., a square root
// of the biased variance estimate.
func PopStdDev(x, weights []float64) float64 {
_, stDev := PopMeanStdDev(x, weights)
return stDev
}
// PopVariance computes the unbiased weighted sample variance:
//
// \sum_i w_i (x_i - mean)^2 / (sum_i w_i)
//
// If weights is nil then all of the weights are 1. If weights is not nil, then
// len(x) must equal len(weights).
func PopVariance(x, weights []float64) float64 {
_, variance := PopMeanVariance(x, weights)
return variance
}
func meanUnnormalisedVarianceSumWeights(x, weights []float64) (mean, unnormalisedVariance, sumWeights float64) {
// This uses the corrected two-pass algorithm (1.7), from "Algorithms for computing
// the sample variance: Analysis and recommendations" by Chan, Tony F., Gene H. Golub,
// and Randall J. LeVeque.
// Note that this will panic if the slice lengths do not match.
mean = Mean(x, weights)
var (
ss float64
compensation float64
)
if weights == nil {
for _, v := range x {
d := v - mean
ss += d * d
compensation += d
}
unnormalisedVariance = (ss - compensation*compensation/float64(len(x)))
return mean, unnormalisedVariance, float64(len(x))
}
for i, v := range x {
w := weights[i]
d := v - mean
wd := w * d
ss += wd * d
compensation += wd
sumWeights += w
}
unnormalisedVariance = (ss - compensation*compensation/sumWeights)
return mean, unnormalisedVariance, sumWeights
}
|