1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package moreland
import (
"image/color"
"math"
)
// rgb represents a physically linear RGB color.
type rgb struct {
R, G, B float64
}
// cieXYZ returns a CIE XYZ color representation of the receiver.
func (c rgb) cieXYZ() cieXYZ {
return cieXYZ{
X: 0.4124*c.R + 0.3576*c.G + 0.1805*c.B,
Y: 0.2126*c.R + 0.7152*c.G + 0.0722*c.B,
Z: 0.0193*c.R + 0.1192*c.G + 0.9505*c.B,
}
}
// sRGBA returns an sRGB color representation of the receiver using the
// provided alpha which must be in [0, 1].
func (c rgb) sRGBA(alpha float64) sRGBA {
// f converts from a linear RGB component to an sRGB component.
f := func(v float64) float64 {
if v > 0.0031308 {
return 1.055*math.Pow(v, 1/2.4) - 0.055
}
return 12.92 * v
}
return sRGBA{
R: f(c.R),
G: f(c.G),
B: f(c.B),
A: alpha,
}
}
// cieXYZ represents a color in CIE XYZ space.
// Y must be in the range [0,1]. X and Z must be greater than 0.
type cieXYZ struct {
X, Y, Z float64
}
// rgb returns a linear RGB representation of the receiver.
func (c cieXYZ) rgb() rgb {
return rgb{
R: c.X*3.2406 + c.Y*-1.5372 + c.Z*-0.4986,
G: c.X*-0.9689 + c.Y*1.8758 + c.Z*0.0415,
B: c.X*0.0557 + c.Y*-0.204 + c.Z*1.057,
}
}
// cieLAB returns a CIELAB color representation of the receiver.
func (c cieXYZ) cieLAB() cieLAB {
// f is an intermediate step in converting from CIE XYZ to CIE LAB.
f := func(v float64) float64 {
if v > 0.008856 {
return math.Pow(v, 1.0/3.0)
}
return 7.787*v + 16.0/116.0
}
tempX := f(c.X / 0.9505)
tempY := f(c.Y)
tempZ := f(c.Z / 1.089)
return cieLAB{
L: (116.0 * tempY) - 16.0,
A: 500.0 * (tempX - tempY),
B: 200 * (tempY - tempZ),
}
}
// sRGBA represents a color within the sRGB color space, with an alpha channel
// but not premultiplied. All values must be in the range [0,1].
type sRGBA struct {
R, G, B, A float64
}
// rgb returns a linear RGB representation of the receiver.
func (c sRGBA) rgb() rgb {
// f converts from an sRGB component to a linear RGB component.
f := func(v float64) float64 {
if v > 0.04045 {
return math.Pow((v+0.055)/1.055, 2.4)
}
return v / 12.92
}
return rgb{
R: f(c.R),
G: f(c.G),
B: f(c.B),
}
}
// RGBA implements the color.Color interface.
func (c sRGBA) RGBA() (r, g, b, a uint32) {
return uint32(c.R * c.A * 0xffff), uint32(c.G * c.A * 0xffff), uint32(c.B * c.A * 0xffff), uint32(c.A * 0xffff)
}
// cieLAB returns a CIE LAB representation of the receiver.
func (c sRGBA) cieLAB() cieLAB {
return c.rgb().cieXYZ().cieLAB()
}
// colorTosRGBA converts a color to an sRGBA.
func colorTosRGBA(c color.Color) sRGBA {
r, g, b, a := c.RGBA()
if a == 0 {
return sRGBA{}
}
return sRGBA{
R: float64(r) / float64(a),
G: float64(g) / float64(a),
B: float64(b) / float64(a),
A: float64(a) / 0xffff,
}
}
// clamp forces all channels in c to be within the range [0, 1].
func (c *sRGBA) clamp() {
if c.R > 1 {
c.R = 1
}
if c.G > 1 {
c.G = 1
}
if c.B > 1 {
c.B = 1
}
if c.A > 1 {
c.A = 1
}
if c.R < 0 {
c.R = 0
}
if c.G < 0 {
c.G = 0
}
if c.B < 0 {
c.B = 0
}
if c.A < 0 {
c.A = 0
}
}
// cieLAB represents a color in CIE LAB space.
// L must be in the range [0, 100].
type cieLAB struct {
L, A, B float64
}
// sRGBA return a linear RGB color representation of the receiver using the
// provided alpha which must be in [0, 1].
func (c cieLAB) sRGBA(alpha float64) sRGBA {
return c.cieXYZ().rgb().sRGBA(alpha)
}
// cieXYZ returns a CIE XYZ color representation of the receiver.
func (c cieLAB) cieXYZ() cieXYZ {
// f is an intermediate step in converting from CIE LAB to CIE XYZ.
f := func(v float64) float64 {
const (
xlim = 0.008856
a = 7.787
b = 16. / 116.
ylim = a*xlim + b
)
if v > ylim {
return v * v * v
}
return (v - b) / a
}
// Reference white-point D65
const xn, yn, zn = 0.95047, 1.0, 1.08883
return cieXYZ{
X: xn * f((c.A/500)+(c.L+16)/116),
Y: yn * f((c.L+16)/116),
Z: zn * f((c.L+16)/116-(c.B/200)),
}
}
// MSH returns an MSH color representation of the receiver.
func (c cieLAB) MSH() msh {
m := math.Pow(c.L*c.L+c.A*c.A+c.B*c.B, 0.5)
return msh{
M: m,
S: math.Acos(c.L / m),
H: math.Atan2(c.B, c.A),
}
}
// MSH represents a color in Magnitude-Saturation-Hue color space.
type msh struct {
M, S, H float64
}
// colorToMSH converts a color to MSH space.
// TODO: If msh ever becomes exported, change this to implment color.Model
func colorToMSH(c color.Color) msh {
return colorTosRGBA(c).cieLAB().MSH()
}
// cieLAB returns a CIELAB representation of the receiver.
func (c msh) cieLAB() cieLAB {
return cieLAB{
L: c.M * math.Cos(c.S),
A: c.M * math.Sin(c.S) * math.Cos(c.H),
B: c.M * math.Sin(c.S) * math.Sin(c.H),
}
}
// RGBA implements the color.Color interface.
func (c msh) RGBA() (r, g, b, a uint32) {
return c.cieLAB().sRGBA(1.0).RGBA()
}
// hueTwist returns the hue twist between color c and converge magnitude
// convergeM.
func hueTwist(c msh, convergeM float64) float64 {
signH := c.H / math.Abs(c.H)
return signH * c.S * math.Sqrt(convergeM*convergeM-c.M*c.M) / (c.M * math.Sin(c.S))
}
|