1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package moreland
import (
"fmt"
"image/color"
"math"
"gonum.org/v1/plot/palette"
)
// luminance is a color palette that interpolates
// between control colors in a way that ensures a linear relationship
// between the luminance of a color and the value it represents.
type luminance struct {
// colors are the control colors to be interpolated among.
// The colors must be monotonically increasing in luminance.
colors []cieLAB
// scalars are the scalar control points associated with
// each item in colors (above). They are monotonically
// increasing values between zero and one that correspond
// to the luminance of a given control color in relation
// to the minimum and maximum luminance among all control
// colors.
scalars []float64
// alpha represents the opacity of the returned
// colors in the range (0,1). It is set to 1 by default.
alpha float64
// min and max are the minimum and maximum values of the range of scalars
// that can be mapped to colors using this ColorMap.
min, max float64
}
// NewLuminance creates a new Luminance ColorMap from the given controlColors.
// luminance is a color palette that interpolates
// between control colors in a way that ensures a linear relationship
// between the luminance of a color and the value it represents.
// If the luminance of the controls is not monotonically increasing, an
// error will be returned.
func NewLuminance(controls []color.Color) (palette.ColorMap, error) {
l := luminance{
colors: make([]cieLAB, len(controls)),
scalars: make([]float64, len(controls)),
alpha: 1,
}
max := math.Inf(-1)
min := math.Inf(1)
for i, c := range controls {
lab := colorTosRGBA(c).cieLAB()
l.colors[i] = lab
max = math.Max(max, lab.L)
min = math.Min(min, lab.L)
if i > 0 && lab.L <= l.colors[i-1].L {
return nil, fmt.Errorf("moreland: luminance of color %d (%g) is not "+
"greater than that of color %d (%g)", i, lab.L, i-1, l.colors[i-1].L)
}
}
// Normalize scalar values to the range (0,1).
rnge := max - min
for i, c := range l.colors {
l.scalars[i] = (c.L - min) / rnge
}
// Sometimes the first and last scalars do not end up
// being exactly zero and one owing to the imperfect
// precision of floating point operations.
// Here we set them to exactly zero and one to avoid
// the possibility of the At() function returning
// an out-of-range error for values that actually
// should be in the range.
l.scalars[0] = 0
l.scalars[len(l.scalars)-1] = 1
return &l, nil
}
// At implements the palette.ColorMap interface for a luminance value.
func (l *luminance) At(v float64) (color.Color, error) {
if err := checkRange(l.min, l.max, v); err != nil {
return nil, err
}
scalar := (v - l.min) / (l.max - l.min)
if !inUnitRange(scalar) {
return nil, fmt.Errorf("moreland: interpolation value (%g) out of range [%g,%g]", scalar, l.min, l.max)
}
i := searchFloat64s(l.scalars, scalar)
if i == 0 {
return l.colors[i].cieXYZ().rgb().sRGBA(l.alpha), nil
}
c1 := l.colors[i-1]
c2 := l.colors[i]
frac := (scalar - l.scalars[i-1]) / (l.scalars[i] - l.scalars[i-1])
o := cieLAB{
L: frac*(c2.L-c1.L) + c1.L,
A: frac*(c2.A-c1.A) + c1.A,
B: frac*(c2.B-c1.B) + c1.B,
}.cieXYZ().rgb().sRGBA(l.alpha)
o.clamp()
return o, nil
}
func checkRange(min, max, val float64) error {
if max == min {
return fmt.Errorf("moreland: color map max == min == %g", max)
}
if min > max {
return fmt.Errorf("moreland: color map max (%g) < min (%g)", max, min)
}
if val < min {
return palette.ErrUnderflow
}
if val > max {
return palette.ErrOverflow
}
if math.IsNaN(val) {
return palette.ErrNaN
}
return nil
}
// searchFloat64s acts the same as sort.SearchFloat64s, except
// it uses a simple search algorithm instead of binary search.
func searchFloat64s(vals []float64, val float64) int {
for j, v := range vals {
if val <= v {
return j
}
}
return len(vals)
}
// SetMax implements the palette.ColorMap interface for a luminance value.
func (l *luminance) SetMax(v float64) {
l.max = v
}
// SetMin implements the palette.ColorMap interface for a luminance value.
func (l *luminance) SetMin(v float64) {
l.min = v
}
// Max implements the palette.ColorMap interface for a luminance value.
func (l *luminance) Max() float64 {
return l.max
}
// Min implements the palette.ColorMap interface for a luminance value.
func (l *luminance) Min() float64 {
return l.min
}
// SetAlpha sets the opacity value of this color map. Zero is transparent
// and one is completely opaque.
// The function will panic is alpha is not between zero and one.
func (l *luminance) SetAlpha(alpha float64) {
if !inUnitRange(alpha) {
panic(fmt.Errorf("moreland: invalid alpha: %g", alpha))
}
l.alpha = alpha
}
// Alpha returns the opacity value of this color map.
func (l *luminance) Alpha() float64 {
return l.alpha
}
// Palette returns a value that fulfills the palette.Palette interface,
// where n is the number of desired colors.
func (l luminance) Palette(n int) palette.Palette {
if l.Max() == 0 && l.Min() == 0 {
l.SetMin(0)
l.SetMax(1)
}
delta := (l.max - l.min) / float64(n-1)
var v float64
c := make([]color.Color, n)
for i := 0; i < n; i++ {
v = l.min + delta*float64(i)
var err error
c[i], err = l.At(v)
if err != nil {
panic(err)
}
}
return plte(c)
}
// plte fulfils the palette.Palette interface.
type plte []color.Color
// Colors fulfils the palette.Palette interface.
func (p plte) Colors() []color.Color {
return p
}
// BlackBody is a Luminance-class ColorMap based on the colors of black body radiation.
// Although the colors are inspired by the wavelengths of light from
// black body radiation, the actual colors used are designed to be
// perceptually uniform. Colors of the desired brightness and hue are chosen,
// and then the colors are adjusted such that the luminance is perceptually
// linear (according to the CIE LAB color space).
func BlackBody() palette.ColorMap {
return &luminance{
colors: []cieLAB{
{L: 0, A: 0, B: 0},
{L: 39.112572747719774, A: 55.92470934659227, B: 37.65159714510402},
{L: 58.45705480680232, A: 43.34389690857626, B: 65.95409116544081},
{L: 84.13253643355525, A: -6.459770854468639, B: 82.41994470228775},
{L: 100, A: 0, B: 0}},
scalars: []float64{0, 0.39112572747719776, 0.5845705480680232, 0.8413253643355525, 1},
alpha: 1,
}
}
// ExtendedBlackBody is a Luminance-class ColorMap based on the colors of black body radiation
// with some blue and purple hues thrown in at the lower end to add some "color."
// The color map is similar to the default colors used in gnuplot. Colors of
// the desired brightness and hue are chosen, and then the colors are adjusted
// such that the luminance is perceptually linear (according to the CIE LAB
// color space).
func ExtendedBlackBody() palette.ColorMap {
return &luminance{
colors: []cieLAB{
{L: 0, A: 0, B: 0},
{L: 21.873483862751876, A: 50.19882295659109, B: -74.66982659778306},
{L: 34.506542513775905, A: 75.41302687474061, B: -88.73807072507786},
{L: 47.02980511087303, A: 70.93217189227919, B: 33.59880053746508},
{L: 65.17482203230537, A: 49.14591409658836, B: 56.86480950937553},
{L: 84.13253643355525, A: -6.459770854468639, B: 82.41994470228775},
{L: 100, A: 0, B: 0},
},
scalars: []float64{0, 0.21873483862751875, 0.34506542513775906, 0.4702980511087303,
0.6517482203230537, 0.8413253643355525, 1},
alpha: 1,
}
}
// Kindlmann is a Luminance-class ColorMap that uses the colors
// first proposed in a paper
// by Kindlmann, Reinhard, and Creem. The map is basically the rainbow
// color map with the luminance adjusted such that it monotonically
// changes, making it much more perceptually viable.
//
// Citation:
// Gordon Kindlmann, Erik Reinhard, and Sarah Creem. 2002. Face-based
// luminance matching for perceptual colormap generation. In Proceedings
// of the conference on Visualization '02 (VIS '02). IEEE Computer Society,
// Washington, DC, USA, 299-306.
func Kindlmann() palette.ColorMap {
return &luminance{
colors: []cieLAB{
{L: 0, A: 0, B: 0},
{L: 10.479520542426698, A: 34.05557958902206, B: -34.21934877170809},
{L: 21.03011379005111, A: 52.30473571100955, B: -61.852601228346536},
{L: 31.03098927978494, A: 23.814976212074402, B: -57.73419358300511},
{L: 40.21480513626115, A: -24.858012706049536, B: -7.322176588219942},
{L: 52.73108089333358, A: -19.064976357731634, B: -25.558178073848147},
{L: 60.007326812392634, A: -61.75624590074585, B: 56.43522875191319},
{L: 69.81578343076002, A: -58.33353084882392, B: 68.37457857626646},
{L: 79.55703752324776, A: -22.50477758899383, B: 78.57946686200843},
{L: 89.818961593653, A: 7.586705160677109, B: 15.375961528833981},
{L: 100, A: 0, B: 0},
},
scalars: []float64{0, 0.10479520542426699, 0.2103011379005111, 0.3103098927978494,
0.4021480513626115, 0.5273108089333358, 0.6000732681239264, 0.6981578343076003,
0.7955703752324775, 0.89818961593653, 1},
alpha: 1,
}
}
// ExtendedKindlmann is a Luminance-class ColorMap uses the colors from
// Kindlmann but also
// adds more hues by doing a more than 360 degree loop around the hues.
// This works because the endpoints have low saturation and very
// different brightness.
func ExtendedKindlmann() palette.ColorMap {
return &luminance{
colors: []cieLAB{
{L: 0, A: 0, B: 0},
{L: 13.371291966477482, A: 40.39368469479174, B: -47.73239449160565},
{L: 25.072421338587574, A: -18.01441053740843, B: -5.313556572210176},
{L: 37.411516363056116, A: -43.058336774976055, B: 39.30203907343062},
{L: 49.75026355291354, A: -15.774050138318895, B: 53.507917567416094},
{L: 61.643756252245225, A: 52.67703578954919, B: 43.82595336046358},
{L: 74.93187540089825, A: 50.92061741619164, B: -30.235411697966242},
{L: 87.64732748562544, A: 14.355163639545697, B: -17.471161313826332},
{L: 100, A: 0, B: 0},
},
scalars: []float64{0, 0.13371291966477483, 0.25072421338587575, 0.37411516363056113,
0.4975026355291354, 0.6164375625224523, 0.7493187540089825, 0.8764732748562544, 1},
alpha: 1,
}
}
|