1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package plotter
import (
"math"
)
type point struct {
X, Y float64
}
type line struct {
p1, p2 point
}
func sect(h, p [5]float64, v1, v2 int) float64 {
return (h[v2]*p[v1] - h[v1]*p[v2]) / (h[v2] - h[v1])
}
// conrecLine performs an operation with a line at a given height derived
// from data over the 2D box interval (i, j) to (i+1, j+1).
type conrecLine func(i, j int, l line, height float64)
// conrec is a Go translation of the C version of CONREC by Paul Bourke:
// http://paulbourke.net/papers/conrec/conrec.c
//
// conrec takes g, an m×n grid function, a sorted slice of contour heights
// and a conrecLine function.
//
// For full details of the algorithm, see the paper at
// http://paulbourke.net/papers/conrec/
func conrec(g GridXYZ, heights []float64, fn conrecLine) {
var (
p1, p2 point
h [5]float64
sh [5]int
xh, yh [5]float64
im = [4]int{0, 1, 1, 0}
jm = [4]int{0, 0, 1, 1}
// We differ from conrec.c in the assignment of a single value
// in cases (castab in conrec.c). The value of castab[1][1][1] is
// 3, but we set cases[1][1][1] to 0.
//
// axiom: When we have a section of the grid where all the
// Z values are equal, and equal to a contour height we would
// expect to have no internal segments to draw.
//
// This is covered by case g) in Paul Bourke's description of
// the CONREC algorithm (a triangle with three vertices the lie
// on the contour level). He says, "... case g above has no really
// satisfactory solution and fortunately will occur rarely with
// real arithmetic." and then goes on to show the following image:
//
// http://paulbourke.net/papers/conrec/conrec3.gif
//
// which shows case g) in the set where no edge is drawn, agreeing
// with our axiom above.
//
// However, in the iteration over sh at conrec.c +44, a triangle
// with all vertices on the plane is given sh = {0,0,0,0,0} and
// then when the switch at conrec.c +93 happens, castab resolves
// that to case 3 for all values of m.
//
// This is fixed by replacing castab/cases[1][1][1] with 0.
cases = [3][3][3]int{
{{0, 0, 8}, {0, 2, 5}, {7, 6, 9}},
{{0, 3, 4}, {1, 0, 1}, {4, 3, 0}},
{{9, 6, 7}, {5, 2, 0}, {8, 0, 0}},
}
)
c, r := g.Dims()
for i := 0; i < c-1; i++ {
for j := 0; j < r-1; j++ {
dmin := math.Min(
math.Min(g.Z(i, j), g.Z(i, j+1)),
math.Min(g.Z(i+1, j), g.Z(i+1, j+1)),
)
dmax := math.Max(
math.Max(g.Z(i, j), g.Z(i, j+1)),
math.Max(g.Z(i+1, j), g.Z(i+1, j+1)),
)
if dmax < heights[0] || heights[len(heights)-1] < dmin {
continue
}
for k := 0; k < len(heights); k++ {
if heights[k] < dmin || dmax < heights[k] {
continue
}
for m := 4; m >= 0; m-- {
if m > 0 {
h[m] = g.Z(i+im[m-1], j+jm[m-1]) - heights[k]
xh[m] = g.X(i + im[m-1])
yh[m] = g.Y(j + jm[m-1])
} else {
h[0] = 0.25 * (h[1] + h[2] + h[3] + h[4])
xh[0] = 0.50 * (g.X(i) + g.X(i+1))
yh[0] = 0.50 * (g.Y(j) + g.Y(j+1))
}
switch {
case h[m] > 0:
sh[m] = 1
case h[m] < 0:
sh[m] = -1
default:
sh[m] = 0
}
}
/*
Note: at this stage the relative heights of the corners and the
centre are in the h array, and the corresponding coordinates are
in the xh and yh arrays. The centre of the box is indexed by 0
and the 4 corners by 1 to 4 as shown below.
Each triangle is then indexed by the parameter m, and the 3
vertices of each triangle are indexed by parameters m1,m2,and m3.
It is assumed that the centre of the box is always vertex 2
though this isimportant only when all 3 vertices lie exactly on
the same contour level, in which case only the side of the box
is drawn.
vertex 4 +-------------------+ vertex 3
| \ / |
| \ m-3 / |
| \ / |
| \ / |
| m=2 X m=2 | the centre is vertex 0
| / \ |
| / \ |
| / m=1 \ |
| / \ |
vertex 1 +-------------------+ vertex 2
*/
// Scan each triangle in the box.
for m := 1; m <= 4; m++ {
m1 := m
const m2 = 0
var m3 int
if m != 4 {
m3 = m + 1
} else {
m3 = 1
}
switch cases[sh[m1]+1][sh[m2]+1][sh[m3]+1] {
case 0:
continue
case 1: // Line between vertices 1 and 2
p1 = point{X: xh[m1], Y: yh[m1]}
p2 = point{X: xh[m2], Y: yh[m2]}
case 2: // Line between vertices 2 and 3
p1 = point{X: xh[m2], Y: yh[m2]}
p2 = point{X: xh[m3], Y: yh[m3]}
case 3: // Line between vertices 3 and 1
p1 = point{X: xh[m3], Y: yh[m3]}
p2 = point{X: xh[m1], Y: yh[m1]}
case 4: // Line between vertex 1 and side 2-3
p1 = point{X: xh[m1], Y: yh[m1]}
p2 = point{X: sect(h, xh, m2, m3), Y: sect(h, yh, m2, m3)}
case 5: // Line between vertex 2 and side 3-1
p1 = point{X: xh[m2], Y: yh[m2]}
p2 = point{X: sect(h, xh, m3, m1), Y: sect(h, yh, m3, m1)}
case 6: // Line between vertex 3 and side 1-2
p1 = point{X: xh[m3], Y: yh[m3]}
p2 = point{X: sect(h, xh, m1, m2), Y: sect(h, yh, m1, m2)}
case 7: // Line between sides 1-2 and 2-3
p1 = point{X: sect(h, xh, m1, m2), Y: sect(h, yh, m1, m2)}
p2 = point{X: sect(h, xh, m2, m3), Y: sect(h, yh, m2, m3)}
case 8: // Line between sides 2-3 and 3-1
p1 = point{X: sect(h, xh, m2, m3), Y: sect(h, yh, m2, m3)}
p2 = point{X: sect(h, xh, m3, m1), Y: sect(h, yh, m3, m1)}
case 9: // Line between sides 3-1 and 1-2
p1 = point{X: sect(h, xh, m3, m1), Y: sect(h, yh, m3, m1)}
p2 = point{X: sect(h, xh, m1, m2), Y: sect(h, yh, m1, m2)}
default:
panic("cannot reach")
}
fn(i, j, line{p1: p1, p2: p2}, heights[k])
}
}
}
}
}
|