File: contour.go

package info (click to toggle)
golang-gonum-v1-plot 0.7.0-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 13,980 kB
  • sloc: sh: 81; makefile: 13
file content (666 lines) | stat: -rw-r--r-- 16,613 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package plotter

import (
	"image/color"
	"math"
	"sort"

	"gonum.org/v1/plot"
	"gonum.org/v1/plot/palette"
	"gonum.org/v1/plot/vg"
	"gonum.org/v1/plot/vg/draw"
)

// Contour implements the Plotter interface, drawing
// a contour plot of the values in the GridXYZ field.
type Contour struct {
	GridXYZ GridXYZ

	// Levels describes the contour heights to plot.
	Levels []float64

	// LineStyles is the set of styles for contour
	// lines. Line styles are are applied to each level
	// in order, modulo the length of LineStyles.
	LineStyles []draw.LineStyle

	// Palette is the color palette used to render
	// the heat map. If Palette is nil or has no
	// defined color, the Contour LineStyle color
	// is used.
	Palette palette.Palette

	// Underflow and Overflow are colors used to draw
	// contours outside the dynamic range defined
	// by Min and Max.
	Underflow color.Color
	Overflow  color.Color

	// Min and Max define the dynamic range of the
	// heat map.
	Min, Max float64
}

// NewContour creates as new contour plotter for the given data, using
// the provided palette. If levels is nil, contours are generated for
// the 0.01, 0.05, 0.25, 0.5, 0.75, 0.95 and 0.99 quantiles.
// If g has Min and Max methods that return a float, those returned
// values are used to set the respective Contour fields.
// If the returned Contour is used when Min is greater than Max, the
// Plot method will panic.
func NewContour(g GridXYZ, levels []float64, p palette.Palette) *Contour {
	var min, max float64
	type minMaxer interface {
		Min() float64
		Max() float64
	}
	switch g := g.(type) {
	case minMaxer:
		min, max = g.Min(), g.Max()
	default:
		min, max = math.Inf(1), math.Inf(-1)
		c, r := g.Dims()
		for i := 0; i < c; i++ {
			for j := 0; j < r; j++ {
				v := g.Z(i, j)
				if math.IsNaN(v) {
					continue
				}
				min = math.Min(min, v)
				max = math.Max(max, v)
			}
		}
	}

	if len(levels) == 0 {
		levels = quantilesR7(g, defaultQuantiles)
	}

	return &Contour{
		GridXYZ:    g,
		Levels:     levels,
		LineStyles: []draw.LineStyle{DefaultLineStyle},
		Palette:    p,
		Min:        min,
		Max:        max,
	}
}

// Default quantiles for case where levels is not explicitly set.
var defaultQuantiles = []float64{0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99}

// quantilesR7 returns the pth quantiles of the data in g according the the R-7 method.
// http://en.wikipedia.org/wiki/Quantile#Estimating_the_quantiles_of_a_population
func quantilesR7(g GridXYZ, p []float64) []float64 {
	c, r := g.Dims()
	data := make([]float64, 0, c*r)
	for i := 0; i < c; i++ {
		for j := 0; j < r; j++ {
			if v := g.Z(i, j); !math.IsNaN(v) {
				data = append(data, v)
			}
		}
	}
	sort.Float64s(data)
	v := make([]float64, len(p))
	for j, q := range p {
		if q == 1 {
			v[j] = data[len(data)-1]
		}
		h := float64(len(data)-1) * q
		i := int(h)
		v[j] = data[i] + (h-math.Floor(h))*(data[i+1]-data[i])
	}
	return v
}

// naive is a debugging constant. If true, Plot performs no contour path
// reconstruction, instead rendering each path segment individually.
const naive = false

// Plot implements the Plot method of the plot.Plotter interface.
func (h *Contour) Plot(c draw.Canvas, plt *plot.Plot) {
	if h.Min > h.Max {
		panic("contour: invalid Z range: min greater than max")
	}

	if naive {
		h.naivePlot(c, plt)
		return
	}

	var pal []color.Color
	if h.Palette != nil {
		pal = h.Palette.Colors()
	}

	trX, trY := plt.Transforms(&c)

	// Collate contour paths and draw them.
	//
	// The alternative naive approach is to draw each line segment as
	// conrec returns it. The integrated path approach allows graphical
	// optimisations and is necessary for contour fill shading.
	cp := contourPaths(h.GridXYZ, h.Levels, trX, trY)

	// ps is a palette scaling factor to scale the palette uniformly
	// across the given levels. This enables a discordance between the
	// number of colours and the number of levels. Sorting is not
	// necessary since contourPaths sorts the levels as a side effect.
	ps := float64(len(pal)-1) / (h.Levels[len(h.Levels)-1] - h.Levels[0])
	if len(h.Levels) == 1 {
		ps = 0
	}

	for i, z := range h.Levels {
		if math.IsNaN(z) {
			continue
		}
		for _, pa := range cp[z] {
			if isLoop(pa) {
				pa.Close()
			}

			style := h.LineStyles[i%len(h.LineStyles)]
			var col color.Color
			switch {
			case z < h.Min:
				col = h.Underflow
			case z > h.Max:
				col = h.Overflow
			case len(pal) == 0:
				col = style.Color
			default:
				col = pal[int((z-h.Levels[0])*ps+0.5)] // Apply palette scaling.
			}
			if col != nil && style.Width != 0 {
				c.SetLineStyle(style)
				c.SetColor(col)
				c.Stroke(pa)
			}
		}
	}
}

// naivePlot implements the a naive rendering approach for contours.
// It is here as a debugging mode since it simply draws line segments
// generated by conrec without further computation.
func (h *Contour) naivePlot(c draw.Canvas, plt *plot.Plot) {
	var pal []color.Color
	if h.Palette != nil {
		pal = h.Palette.Colors()
	}

	trX, trY := plt.Transforms(&c)

	// Sort levels prior to palette scaling since we can't depend on
	// sorting as a side effect from calling contourPaths.
	sort.Float64s(h.Levels)
	// ps is a palette scaling factor to scale the palette uniformly
	// across the given levels. This enables a discordance between the
	// number of colours and the number of levels.
	ps := float64(len(pal)-1) / (h.Levels[len(h.Levels)-1] - h.Levels[0])
	if len(h.Levels) == 1 {
		ps = 0
	}

	levelMap := make(map[float64]int)
	for i, z := range h.Levels {
		levelMap[z] = i
	}

	// Draw each line segment as conrec generates it.
	var pa vg.Path
	conrec(h.GridXYZ, h.Levels, func(_, _ int, l line, z float64) {
		if math.IsNaN(z) {
			return
		}

		pa = pa[:0]

		x1, y1 := trX(l.p1.X), trY(l.p1.Y)
		x2, y2 := trX(l.p2.X), trY(l.p2.Y)

		pt1 := vg.Point{X: x1, Y: y1}
		pt2 := vg.Point{X: x2, Y: y2}
		if !c.Contains(pt1) || !c.Contains(pt2) {
			return
		}

		pa.Move(pt1)
		pa.Line(pt2)
		pa.Close()

		style := h.LineStyles[levelMap[z]%len(h.LineStyles)]
		var col color.Color
		switch {
		case z < h.Min:
			col = h.Underflow
		case z > h.Max:
			col = h.Overflow
		case len(pal) == 0:
			col = style.Color
		default:
			col = pal[int((z-h.Levels[0])*ps+0.5)] // Apply palette scaling.
		}
		if col != nil && style.Width != 0 {
			c.SetLineStyle(style)
			c.SetColor(col)
			c.Stroke(pa)
		}
	})
}

// DataRange implements the DataRange method
// of the plot.DataRanger interface.
func (h *Contour) DataRange() (xmin, xmax, ymin, ymax float64) {
	c, r := h.GridXYZ.Dims()
	return h.GridXYZ.X(0), h.GridXYZ.X(c - 1), h.GridXYZ.Y(0), h.GridXYZ.Y(r - 1)
}

// GlyphBoxes implements the GlyphBoxes method
// of the plot.GlyphBoxer interface.
func (h *Contour) GlyphBoxes(plt *plot.Plot) []plot.GlyphBox {
	c, r := h.GridXYZ.Dims()
	b := make([]plot.GlyphBox, 0, r*c)
	for i := 0; i < c; i++ {
		for j := 0; j < r; j++ {
			b = append(b, plot.GlyphBox{
				X: plt.X.Norm(h.GridXYZ.X(i)),
				Y: plt.Y.Norm(h.GridXYZ.Y(j)),
				Rectangle: vg.Rectangle{
					Min: vg.Point{X: -2.5, Y: -2.5},
					Max: vg.Point{X: +2.5, Y: +2.5},
				},
			})
		}
	}
	return b
}

// isLoop returns true iff a vg.Path is a closed loop.
func isLoop(p vg.Path) bool {
	s := p[0]
	e := p[len(p)-1]
	return s.Pos == e.Pos
}

// contourPaths returns a collection of vg.Paths describing contour lines based
// on the input data in m cut at the given levels. The trX and trY function
// are coordinate transforms. The returned map contains slices of paths keyed
// on the value of the contour level. contouPaths sorts levels ascending as a
// side effect.
func contourPaths(m GridXYZ, levels []float64, trX, trY func(float64) vg.Length) map[float64][]vg.Path {
	sort.Float64s(levels)

	ends := make(map[float64]endMap)
	conts := make(contourSet)
	conrec(m, levels, func(_, _ int, l line, z float64) {
		paths(l, z, ends, conts)
	})
	ends = nil

	// TODO(kortschak): Check that all non-loop paths have
	// both ends at boundary. If any end is not at a boundary
	// it may have a partner near by. Find this partner and join
	// the two conts by merging the near by ends at the mean
	// location. This operation is done level by level to ensure
	// close contours of different heights are not joined.
	// A partner should be a float error different end, but I
	// suspect that is is possible for a bi- or higher order
	// furcation so it may be that the path ends at middle node
	// of another path. This needs to be investigated.

	// Excise loops from crossed paths.
	for c := range conts {
		// Always try to do quick excision in production if possible.
		c.exciseLoops(conts, true)
	}

	// Build vg.Paths.
	paths := make(map[float64][]vg.Path)
	for c := range conts {
		paths[c.z] = append(paths[c.z], c.path(trX, trY))
	}

	return paths
}

// contourSet hold a working collection of contours.
type contourSet map[*contour]struct{}

// endMap holds a working collection of available ends.
type endMap map[point]*contour

// paths extends a conrecLine function to build a set of contours that represent
// paths along contour lines. It is used as the engine for a closure where ends
// and conts are closed around in a conrecLine function, and l and z are the
// line and height values provided by conrec. At the end of a conrec call,
// conts will contain a map keyed on the set of paths.
func paths(l line, z float64, ends map[float64]endMap, conts contourSet) {
	zEnds, ok := ends[z]
	if !ok {
		zEnds = make(endMap)
		ends[z] = zEnds
		c := newContour(l, z)
		zEnds[l.p1] = c
		zEnds[l.p2] = c
		conts[c] = struct{}{}
		return
	}

	c1, ok1 := zEnds[l.p1]
	c2, ok2 := zEnds[l.p2]

	// New segment.
	if !ok1 && !ok2 {
		c := newContour(l, z)
		zEnds[l.p1] = c
		zEnds[l.p2] = c
		conts[c] = struct{}{}
		return
	}

	if ok1 {
		// Add l.p2 to end of l.p1's contour.
		if !c1.extend(l, zEnds) {
			panic("internal link")
		}
	} else if ok2 {
		// Add l.p1 to end of l.p2's contour.
		if !c2.extend(l, zEnds) {
			panic("internal link")
		}
	}

	if c1 == c2 {
		return
	}

	// Join conts.
	if ok1 && ok2 {
		if !c1.connect(c2, zEnds) {
			panic("internal link")
		}
		delete(conts, c2)
	}
}

// path is a set of points forming a path.
type path []point

// contour holds a set of point lying sequentially along a contour line
// at height z.
type contour struct {
	z float64

	// backward and forward must each always have at least one entry.
	backward path
	forward  path
}

// newContour returns a contour starting with the end points of l for the
// height z.
func newContour(l line, z float64) *contour {
	return &contour{z: z, forward: path{l.p1}, backward: path{l.p2}}
}

func (c *contour) path(trX, trY func(float64) vg.Length) vg.Path {
	var pa vg.Path
	p := c.front()
	pa.Move(vg.Point{X: trX(p.X), Y: trY(p.Y)})
	for i := len(c.backward) - 2; i >= 0; i-- {
		p = c.backward[i]
		pa.Line(vg.Point{X: trX(p.X), Y: trY(p.Y)})
	}
	for _, p := range c.forward {
		pa.Line(vg.Point{X: trX(p.X), Y: trY(p.Y)})
	}

	return pa
}

// front returns the first point in the contour.
func (c *contour) front() point { return c.backward[len(c.backward)-1] }

// back returns the last point in the contour
func (c *contour) back() point { return c.forward[len(c.forward)-1] }

// extend adds the line l to the contour, updating the ends map. It returns
// a boolean indicating whether the extension was successful.
func (c *contour) extend(l line, ends endMap) (ok bool) {
	switch c.front() {
	case l.p1:
		c.backward = append(c.backward, l.p2)
		delete(ends, l.p1)
		ends[l.p2] = c
		return true
	case l.p2:
		c.backward = append(c.backward, l.p1)
		delete(ends, l.p2)
		ends[l.p1] = c
		return true
	}

	switch c.back() {
	case l.p1:
		c.forward = append(c.forward, l.p2)
		delete(ends, l.p1)
		ends[l.p2] = c
		return true
	case l.p2:
		c.forward = append(c.forward, l.p1)
		delete(ends, l.p2)
		ends[l.p1] = c
		return true
	}

	return false
}

// reverse reverses the order of the point in a path and returns it.
func (p path) reverse() path {
	for i, j := 0, len(p)-1; i < j; i, j = i+1, j-1 {
		p[i], p[j] = p[j], p[i]
	}
	return p
}

// connect connects the contour b with the receiver, updating the ends map.
// It returns a boolean indicating whether the connection was successful.
func (c *contour) connect(b *contour, ends endMap) (ok bool) {
	switch c.front() {
	case b.front():
		delete(ends, c.front())
		ends[b.back()] = c
		c.backward = append(c.backward, b.backward.reverse()[1:]...)
		c.backward = append(c.backward, b.forward...)
		return true
	case b.back():
		delete(ends, c.front())
		ends[b.front()] = c
		c.backward = append(c.backward, b.forward.reverse()[1:]...)
		c.backward = append(c.backward, b.backward...)
		return true
	}

	switch c.back() {
	case b.front():
		delete(ends, c.back())
		ends[b.back()] = c
		c.forward = append(c.forward, b.backward.reverse()[1:]...)
		c.forward = append(c.forward, b.forward...)
		return true
	case b.back():
		delete(ends, c.back())
		ends[b.front()] = c
		c.forward = append(c.forward, b.forward.reverse()[1:]...)
		c.forward = append(c.forward, b.backward...)
		return true
	}

	return false
}

// exciseLoops finds loops within the contour that do not include the
// start and end. Loops are removed from the contour and added to the
// contour set. Loop detection is performed by Johnson's algorithm for
// finding elementary cycles.
func (c *contour) exciseLoops(conts contourSet, quick bool) {
	if quick {
		// Find cases we can guarantee don't need
		// a complete analysis.
		seen := make(map[point]struct{})
		var crossOvers int
		for _, p := range c.backward {
			if _, ok := seen[p]; ok {
				crossOvers++
			}
			seen[p] = struct{}{}
		}
		for _, p := range c.forward[:len(c.forward)-1] {
			if _, ok := seen[p]; ok {
				crossOvers++
			}
			seen[p] = struct{}{}
		}
		switch crossOvers {
		case 0:
			return
		case 1:
			c.exciseQuick(conts)
			return
		}
	}

	wp := append(c.backward.reverse(), c.forward...)
	g := graphFrom(wp)
	cycles := cyclesIn(g)
	if len(cycles) == 0 {
		// No further work to do but clean up after ourselves.
		// We should not have reached here.
		c.backward.reverse()
		return
	}
	delete(conts, c)

	// Put loops into the contour set.
	for _, cyc := range cycles {
		loop := wp.subpath(cyc)
		conts[&contour{
			z:        c.z,
			backward: loop[:1:1],
			forward:  loop[1:],
		}] = struct{}{}
	}

	// Find non-loop paths and keep them.
	g.remove(cycles)
	paths := wp.linearPathsIn(g)
	for _, p := range paths {
		conts[&contour{
			z:        c.z,
			backward: p[:1:1],
			forward:  p[1:],
		}] = struct{}{}
	}
}

// graphFrom returns a graph representing the point path p.
func graphFrom(p path) graph {
	g := make([]set, len(p))
	seen := make(map[point]int)
	for i, v := range p {
		if _, ok := seen[v]; !ok {
			seen[v] = i
		}
	}

	for i, v := range p {
		e, ok := seen[v]
		if ok && g[e] == nil {
			g[e] = make(set)
		}
		if i < len(p)-1 {
			g[e][seen[p[i+1]]] = struct{}{}
		}
	}

	return g
}

// subpath returns a subpath given the slice of point indices
// into the path.
func (p path) subpath(i []int) path {
	pa := make(path, 0, len(i))
	for _, n := range i {
		pa = append(pa, p[n])
	}
	return pa
}

// linearPathsIn returns the linear paths in g created from p.
// If g contains any cycles linearPaths will panic.
func (p path) linearPathsIn(g graph) []path {
	var pa []path

	var u int
	for u < len(g) {
		for ; u < len(g) && len(g[u]) == 0; u++ {
		}
		if u == len(g) {
			return pa
		}
		var curr path
		for {
			if len(g[u]) == 0 {
				curr = append(curr, p[u])
				pa = append(pa, curr)
				if u == len(g)-1 {
					return pa
				}
				break
			}
			if len(g[u]) > 1 {
				panic("contour: not a linear path")
			}
			for v := range g[u] {
				curr = append(curr, p[u])
				u = v
				break
			}
		}
	}

	return pa
}

// exciseQuick is a heuristic approach to loop excision. It does not
// correctly identify loops in all cases, but those cases are likely
// to be rare.
func (c *contour) exciseQuick(conts contourSet) {
	wp := append(c.backward.reverse(), c.forward...)
	seen := make(map[point]int)
	for j := 0; j < len(wp); {
		p := wp[j]
		if i, ok := seen[p]; ok && p != wp[0] && p != wp[len(wp)-1] {
			conts[&contour{
				z:        c.z,
				backward: path{wp[i]},
				forward:  append(path(nil), wp[i+1:j+1]...),
			}] = struct{}{}
			wp = append(wp[:i], wp[j:]...)
			j = i + 1
		} else {
			seen[p] = j
			j++
		}
	}
	c.backward = c.backward[:1]
	c.backward[0] = wp[0]
	c.forward = wp[1:]
}