1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package plotter
// johnson implements Johnson's "Finding all the elementary
// circuits of a directed graph" algorithm. SIAM J. Comput. 4(1):1975.
//
// Comments in the johnson methods are kept in sync with the comments
// and labels from the paper.
type johnson struct {
adjacent graph // SCC adjacency list.
b []set // Johnson's "B-list".
blocked []bool
s int
stack []int
result [][]int
}
// cyclesIn returns the set of elementary cycles in the graph g.
func cyclesIn(g graph) [][]int {
j := johnson{
adjacent: g.clone(),
b: make([]set, len(g)),
blocked: make([]bool, len(g)),
}
// len(j.adjacent) will be the order of g until Tarjan's analysis
// finds no SCC, at which point t.sccSubGraph returns nil and the
// loop breaks.
for j.s < len(j.adjacent)-1 {
// We use the previous SCC adjacency to reduce the work needed.
t := newTarjan(j.adjacent.subgraph(j.s))
// A_k = adjacency structure of strong component K with least
// vertex in subgraph of G induced by {s, s+1, ... ,n}.
j.adjacent = t.sccSubGraph(2) // Only allow SCCs with >= 2 vertices.
if len(j.adjacent) == 0 {
break
}
// s = least vertex in V_k
for _, v := range j.adjacent {
s := len(j.adjacent)
for n := range v {
if n < s {
s = n
}
}
if s < j.s {
j.s = s
}
}
for i, v := range j.adjacent {
if len(v) > 0 {
j.blocked[i] = false
j.b[i] = make(set)
}
}
//L3:
_ = j.circuit(j.s)
j.s++
}
return j.result
}
// circuit is the CIRCUIT sub-procedure in the paper.
func (j *johnson) circuit(v int) bool {
f := false
j.stack = append(j.stack, v)
j.blocked[v] = true
//L1:
for w := range j.adjacent[v] {
if w == j.s {
// Output circuit composed of stack followed by s.
r := make([]int, len(j.stack)+1)
copy(r, j.stack)
r[len(r)-1] = j.s
j.result = append(j.result, r)
f = true
} else if !j.blocked[w] {
if j.circuit(w) {
f = true
}
}
}
//L2:
if f {
j.unblock(v)
} else {
for w := range j.adjacent[v] {
j.b[w][v] = struct{}{}
}
}
j.stack = j.stack[:len(j.stack)-1]
return f
}
// unblock is the UNBLOCK sub-procedure in the paper.
func (j *johnson) unblock(u int) {
j.blocked[u] = false
for w := range j.b[u] {
delete(j.b[u], w)
if j.blocked[w] {
j.unblock(w)
}
}
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
// tarjan implements Tarjan's strongly connected component finding
// algorithm. The implementation is from the pseudocode at
//
// http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm?oldid=642744644
//
type tarjan struct {
g graph
index int
indexTable []int
lowLink []int
onStack []bool
stack []int
sccs [][]int
}
// newTarjan returns a tarjan with the sccs field filled with the
// strongly connected components of the directed graph g.
func newTarjan(g graph) *tarjan {
t := tarjan{
g: g,
indexTable: make([]int, len(g)),
lowLink: make([]int, len(g)),
onStack: make([]bool, len(g)),
}
for v := range t.g {
if t.indexTable[v] == 0 {
t.strongconnect(v)
}
}
return &t
}
// strongconnect is the strongconnect function described in the
// wikipedia article.
func (t *tarjan) strongconnect(v int) {
// Set the depth index for v to the smallest unused index.
t.index++
t.indexTable[v] = t.index
t.lowLink[v] = t.index
t.stack = append(t.stack, v)
t.onStack[v] = true
// Consider successors of v.
for w := range t.g[v] {
if t.indexTable[w] == 0 {
// Successor w has not yet been visited; recur on it.
t.strongconnect(w)
t.lowLink[v] = min(t.lowLink[v], t.lowLink[w])
} else if t.onStack[w] {
// Successor w is in stack s and hence in the current SCC.
t.lowLink[v] = min(t.lowLink[v], t.indexTable[w])
}
}
// If v is a root node, pop the stack and generate an SCC.
if t.lowLink[v] == t.indexTable[v] {
// Start a new strongly connected component.
var (
scc []int
w int
)
for {
w, t.stack = t.stack[len(t.stack)-1], t.stack[:len(t.stack)-1]
t.onStack[w] = false
// Add w to current strongly connected component.
scc = append(scc, w)
if w == v {
break
}
}
// Output the current strongly connected component.
t.sccs = append(t.sccs, scc)
}
}
// sccSubGraph returns the graph of the tarjan's strongly connected
// components with each SCC containing at least min vertices.
// sccSubGraph returns nil if there is no SCC with at least min
// members.
func (t *tarjan) sccSubGraph(min int) graph {
if len(t.g) == 0 {
return nil
}
sub := make(graph, len(t.g))
var n int
for _, scc := range t.sccs {
if len(scc) < min {
continue
}
n++
for _, u := range scc {
for _, v := range scc {
if _, ok := t.g[u][v]; ok {
if sub[u] == nil {
sub[u] = make(set)
}
sub[u][v] = struct{}{}
}
}
}
}
if n == 0 {
return nil
}
return sub
}
// set is an integer set.
type set map[int]struct{}
// graph is an edge list representation of a graph.
type graph []set
// remove deletes edges that make up the given paths from the graph.
func (g graph) remove(paths [][]int) {
for _, p := range paths {
for i, u := range p[:len(p)-1] {
delete(g[u], p[i+1])
}
}
}
// subgraph returns a subgraph of g induced by {s, s+1, ... , n}. The
// subgraph is destructively generated in g.
func (g graph) subgraph(s int) graph {
for u := range g[:s] {
g[u] = nil
}
for u, e := range g[s:] {
for v := range e {
if v < s {
delete(g[u+s], v)
}
}
}
return g
}
// clone returns a deep copy of the graph g.
func (g graph) clone() graph {
c := make(graph, len(g))
for u, e := range g {
for v := range e {
if c[u] == nil {
c[u] = make(set)
}
c[u][v] = struct{}{}
}
}
return c
}
|