1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
|
/*
Copyright 2017 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package spanner
import (
"container/heap"
"container/list"
"context"
"fmt"
"log"
"math"
"math/rand"
"runtime/debug"
"sync"
"time"
"cloud.google.com/go/internal/trace"
"cloud.google.com/go/internal/version"
vkit "cloud.google.com/go/spanner/apiv1"
"go.opencensus.io/stats"
"go.opencensus.io/tag"
sppb "google.golang.org/genproto/googleapis/spanner/v1"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/metadata"
)
const healthCheckIntervalMins = 50
// sessionHandle is an interface for transactions to access Cloud Spanner
// sessions safely. It is generated by sessionPool.take().
type sessionHandle struct {
// mu guarantees that the inner session object is returned / destroyed only
// once.
mu sync.Mutex
// session is a pointer to a session object. Transactions never need to
// access it directly.
session *session
// checkoutTime is the time the session was checked out of the pool.
checkoutTime time.Time
// trackedSessionHandle is the linked list node which links the session to
// the list of tracked session handles. trackedSessionHandle is only set if
// TrackSessionHandles has been enabled in the session pool configuration.
trackedSessionHandle *list.Element
// stack is the call stack of the goroutine that checked out the session
// from the pool. This can be used to track down session leak problems.
stack []byte
}
// recycle gives the inner session object back to its home session pool. It is
// safe to call recycle multiple times but only the first one would take effect.
func (sh *sessionHandle) recycle() {
sh.mu.Lock()
if sh.session == nil {
// sessionHandle has already been recycled.
sh.mu.Unlock()
return
}
p := sh.session.pool
tracked := sh.trackedSessionHandle
sh.session.recycle()
sh.session = nil
sh.trackedSessionHandle = nil
sh.checkoutTime = time.Time{}
sh.stack = nil
sh.mu.Unlock()
if tracked != nil {
p.mu.Lock()
p.trackedSessionHandles.Remove(tracked)
p.mu.Unlock()
}
}
// getID gets the Cloud Spanner session ID from the internal session object.
// getID returns empty string if the sessionHandle is nil or the inner session
// object has been released by recycle / destroy.
func (sh *sessionHandle) getID() string {
sh.mu.Lock()
defer sh.mu.Unlock()
if sh.session == nil {
// sessionHandle has already been recycled/destroyed.
return ""
}
return sh.session.getID()
}
// getClient gets the Cloud Spanner RPC client associated with the session ID
// in sessionHandle.
func (sh *sessionHandle) getClient() *vkit.Client {
sh.mu.Lock()
defer sh.mu.Unlock()
if sh.session == nil {
return nil
}
return sh.session.client
}
// getMetadata returns the metadata associated with the session in sessionHandle.
func (sh *sessionHandle) getMetadata() metadata.MD {
sh.mu.Lock()
defer sh.mu.Unlock()
if sh.session == nil {
return nil
}
return sh.session.md
}
// getTransactionID returns the transaction id in the session if available.
func (sh *sessionHandle) getTransactionID() transactionID {
sh.mu.Lock()
defer sh.mu.Unlock()
if sh.session == nil {
return nil
}
return sh.session.tx
}
// destroy destroys the inner session object. It is safe to call destroy
// multiple times and only the first call would attempt to
// destroy the inner session object.
func (sh *sessionHandle) destroy() {
sh.mu.Lock()
s := sh.session
if s == nil {
// sessionHandle has already been recycled.
sh.mu.Unlock()
return
}
tracked := sh.trackedSessionHandle
sh.session = nil
sh.trackedSessionHandle = nil
sh.checkoutTime = time.Time{}
sh.stack = nil
sh.mu.Unlock()
if tracked != nil {
p := s.pool
p.mu.Lock()
p.trackedSessionHandles.Remove(tracked)
p.mu.Unlock()
}
s.destroy(false)
}
// session wraps a Cloud Spanner session ID through which transactions are
// created and executed.
type session struct {
// client is the RPC channel to Cloud Spanner. It is set only once during
// session's creation.
client *vkit.Client
// id is the unique id of the session in Cloud Spanner. It is set only once
// during session's creation.
id string
// pool is the session's home session pool where it was created. It is set
// only once during session's creation.
pool *sessionPool
// createTime is the timestamp of the session's creation. It is set only
// once during session's creation.
createTime time.Time
// logger is the logger configured for the Spanner client that created the
// session. If nil, logging will be directed to the standard logger.
logger *log.Logger
// mu protects the following fields from concurrent access: both
// healthcheck workers and transactions can modify them.
mu sync.Mutex
// valid marks the validity of a session.
valid bool
// hcIndex is the index of the session inside the global healthcheck queue.
// If hcIndex < 0, session has been unregistered from the queue.
hcIndex int
// idleList is the linkedlist node which links the session to its home
// session pool's idle list. If idleList == nil, the
// session is not in idle list.
idleList *list.Element
// nextCheck is the timestamp of next scheduled healthcheck of the session.
// It is maintained by the global health checker.
nextCheck time.Time
// checkingHelath is true if currently this session is being processed by
// health checker. Must be modified under health checker lock.
checkingHealth bool
// md is the Metadata to be sent with each request.
md metadata.MD
// tx contains the transaction id if the session has been prepared for
// write.
tx transactionID
// firstHCDone indicates whether the first health check is done or not.
firstHCDone bool
}
// isValid returns true if the session is still valid for use.
func (s *session) isValid() bool {
s.mu.Lock()
defer s.mu.Unlock()
return s.valid
}
// isWritePrepared returns true if the session is prepared for write.
func (s *session) isWritePrepared() bool {
s.mu.Lock()
defer s.mu.Unlock()
return s.tx != nil
}
// String implements fmt.Stringer for session.
func (s *session) String() string {
s.mu.Lock()
defer s.mu.Unlock()
return fmt.Sprintf("<id=%v, hcIdx=%v, idleList=%p, valid=%v, create=%v, nextcheck=%v>",
s.id, s.hcIndex, s.idleList, s.valid, s.createTime, s.nextCheck)
}
// ping verifies if the session is still alive in Cloud Spanner.
func (s *session) ping() error {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
// s.getID is safe even when s is invalid.
_, err := s.client.GetSession(contextWithOutgoingMetadata(ctx, s.md), &sppb.GetSessionRequest{Name: s.getID()})
return err
}
// setHcIndex atomically sets the session's index in the healthcheck queue and
// returns the old index.
func (s *session) setHcIndex(i int) int {
s.mu.Lock()
defer s.mu.Unlock()
oi := s.hcIndex
s.hcIndex = i
return oi
}
// setIdleList atomically sets the session's idle list link and returns the old
// link.
func (s *session) setIdleList(le *list.Element) *list.Element {
s.mu.Lock()
defer s.mu.Unlock()
old := s.idleList
s.idleList = le
return old
}
// invalidate marks a session as invalid and returns the old validity.
func (s *session) invalidate() bool {
s.mu.Lock()
defer s.mu.Unlock()
ov := s.valid
s.valid = false
return ov
}
// setNextCheck sets the timestamp for next healthcheck on the session.
func (s *session) setNextCheck(t time.Time) {
s.mu.Lock()
defer s.mu.Unlock()
s.nextCheck = t
}
// setTransactionID sets the transaction id in the session
func (s *session) setTransactionID(tx transactionID) {
s.mu.Lock()
defer s.mu.Unlock()
s.tx = tx
}
// getID returns the session ID which uniquely identifies the session in Cloud
// Spanner.
func (s *session) getID() string {
s.mu.Lock()
defer s.mu.Unlock()
return s.id
}
// getHcIndex returns the session's index into the global healthcheck priority
// queue.
func (s *session) getHcIndex() int {
s.mu.Lock()
defer s.mu.Unlock()
return s.hcIndex
}
// getIdleList returns the session's link in its home session pool's idle list.
func (s *session) getIdleList() *list.Element {
s.mu.Lock()
defer s.mu.Unlock()
return s.idleList
}
// getNextCheck returns the timestamp for next healthcheck on the session.
func (s *session) getNextCheck() time.Time {
s.mu.Lock()
defer s.mu.Unlock()
return s.nextCheck
}
// recycle turns the session back to its home session pool.
func (s *session) recycle() {
s.setTransactionID(nil)
if !s.pool.recycle(s) {
// s is rejected by its home session pool because it expired and the
// session pool currently has enough open sessions.
s.destroy(false)
}
}
// destroy removes the session from its home session pool, healthcheck queue
// and Cloud Spanner service.
func (s *session) destroy(isExpire bool) bool {
// Remove s from session pool.
if !s.pool.remove(s, isExpire) {
return false
}
// Unregister s from healthcheck queue.
s.pool.hc.unregister(s)
// Remove s from Cloud Spanner service.
ctx, cancel := context.WithTimeout(context.Background(), 15*time.Second)
defer cancel()
s.delete(ctx)
return true
}
func (s *session) delete(ctx context.Context) {
// Ignore the error because even if we fail to explicitly destroy the
// session, it will be eventually garbage collected by Cloud Spanner.
err := s.client.DeleteSession(ctx, &sppb.DeleteSessionRequest{Name: s.getID()})
if err != nil {
logf(s.logger, "Failed to delete session %v. Error: %v", s.getID(), err)
}
}
// prepareForWrite prepares the session for write if it is not already in that
// state.
func (s *session) prepareForWrite(ctx context.Context) error {
if s.isWritePrepared() {
return nil
}
tx, err := beginTransaction(contextWithOutgoingMetadata(ctx, s.md), s.getID(), s.client)
// Session not found should cause the session to be removed from the pool.
if isSessionNotFoundError(err) {
s.pool.remove(s, false)
s.pool.hc.unregister(s)
return err
}
// Enable/disable background preparing of write sessions depending on
// whether the BeginTransaction call succeeded. This will prevent the
// session pool workers from going into an infinite loop of trying to
// prepare sessions. Any subsequent successful BeginTransaction call from
// for example takeWriteSession will re-enable the background process.
s.pool.mu.Lock()
s.pool.disableBackgroundPrepareSessions = err != nil
s.pool.mu.Unlock()
if err != nil {
return err
}
s.setTransactionID(tx)
return nil
}
// SessionPoolConfig stores configurations of a session pool.
type SessionPoolConfig struct {
// MaxOpened is the maximum number of opened sessions allowed by the session
// pool. If the client tries to open a session and there are already
// MaxOpened sessions, it will block until one becomes available or the
// context passed to the client method is canceled or times out.
//
// Defaults to NumChannels * 100.
MaxOpened uint64
// MinOpened is the minimum number of opened sessions that the session pool
// tries to maintain. Session pool won't continue to expire sessions if
// number of opened connections drops below MinOpened. However, if a session
// is found to be broken, it will still be evicted from the session pool,
// therefore it is posssible that the number of opened sessions drops below
// MinOpened.
//
// Defaults to 100.
MinOpened uint64
// MaxIdle is the maximum number of idle sessions, pool is allowed to keep.
//
// Defaults to 0.
MaxIdle uint64
// MaxBurst is the maximum number of concurrent session creation requests.
//
// Defaults to 10.
MaxBurst uint64
// WriteSessions is the fraction of sessions we try to keep prepared for
// write.
//
// Defaults to 0.2.
WriteSessions float64
// HealthCheckWorkers is number of workers used by health checker for this
// pool.
//
// Defaults to 10.
HealthCheckWorkers int
// HealthCheckInterval is how often the health checker pings a session.
//
// Defaults to 5m.
HealthCheckInterval time.Duration
// TrackSessionHandles determines whether the session pool will keep track
// of the stacktrace of the goroutines that take sessions from the pool.
// This setting can be used to track down session leak problems.
//
// Defaults to false.
TrackSessionHandles bool
// healthCheckSampleInterval is how often the health checker samples live
// session (for use in maintaining session pool size).
//
// Defaults to 1m.
healthCheckSampleInterval time.Duration
// sessionLabels for the sessions created in the session pool.
sessionLabels map[string]string
}
// DefaultSessionPoolConfig is the default configuration for the session pool
// that will be used for a Spanner client, unless the user supplies a specific
// session pool config.
var DefaultSessionPoolConfig = SessionPoolConfig{
MinOpened: 100,
MaxOpened: numChannels * 100,
MaxBurst: 10,
WriteSessions: 0.2,
HealthCheckWorkers: 10,
HealthCheckInterval: healthCheckIntervalMins * time.Minute,
}
// errMinOpenedGTMapOpened returns error for SessionPoolConfig.MaxOpened < SessionPoolConfig.MinOpened when SessionPoolConfig.MaxOpened is set.
func errMinOpenedGTMaxOpened(maxOpened, minOpened uint64) error {
return spannerErrorf(codes.InvalidArgument,
"require SessionPoolConfig.MaxOpened >= SessionPoolConfig.MinOpened, got %d and %d", maxOpened, minOpened)
}
// errWriteFractionOutOfRange returns error for
// SessionPoolConfig.WriteFraction < 0 or SessionPoolConfig.WriteFraction > 1
func errWriteFractionOutOfRange(writeFraction float64) error {
return spannerErrorf(codes.InvalidArgument,
"require SessionPoolConfig.WriteSessions >= 0.0 && SessionPoolConfig.WriteSessions <= 1.0, got %.2f", writeFraction)
}
// errHealthCheckWorkersNegative returns error for
// SessionPoolConfig.HealthCheckWorkers < 0
func errHealthCheckWorkersNegative(workers int) error {
return spannerErrorf(codes.InvalidArgument,
"require SessionPoolConfig.HealthCheckWorkers >= 0, got %d", workers)
}
// errHealthCheckIntervalNegative returns error for
// SessionPoolConfig.HealthCheckInterval < 0
func errHealthCheckIntervalNegative(interval time.Duration) error {
return spannerErrorf(codes.InvalidArgument,
"require SessionPoolConfig.HealthCheckInterval >= 0, got %v", interval)
}
// validate verifies that the SessionPoolConfig is good for use.
func (spc *SessionPoolConfig) validate() error {
if spc.MinOpened > spc.MaxOpened && spc.MaxOpened > 0 {
return errMinOpenedGTMaxOpened(spc.MaxOpened, spc.MinOpened)
}
if spc.WriteSessions < 0.0 || spc.WriteSessions > 1.0 {
return errWriteFractionOutOfRange(spc.WriteSessions)
}
if spc.HealthCheckWorkers < 0 {
return errHealthCheckWorkersNegative(spc.HealthCheckWorkers)
}
if spc.HealthCheckInterval < 0 {
return errHealthCheckIntervalNegative(spc.HealthCheckInterval)
}
return nil
}
// sessionPool creates and caches Cloud Spanner sessions.
type sessionPool struct {
// mu protects sessionPool from concurrent access.
mu sync.Mutex
// valid marks the validity of the session pool.
valid bool
// sc is used to create the sessions for the pool.
sc *sessionClient
// trackedSessionHandles contains all sessions handles that have been
// checked out of the pool. The list is only filled if TrackSessionHandles
// has been enabled.
trackedSessionHandles list.List
// idleList caches idle session IDs. Session IDs in this list can be
// allocated for use.
idleList list.List
// idleWriteList caches idle sessions which have been prepared for write.
idleWriteList list.List
// mayGetSession is for broadcasting that session retrival/creation may
// proceed.
mayGetSession chan struct{}
// numOpened is the total number of open sessions from the session pool.
numOpened uint64
// createReqs is the number of ongoing session creation requests.
createReqs uint64
// prepareReqs is the number of ongoing session preparation request.
prepareReqs uint64
// disableBackgroundPrepareSessions indicates that the BeginTransaction
// call for a read/write transaction failed with a permanent error, such as
// PermissionDenied or `Database not found`. Further background calls to
// prepare sessions will be disabled.
disableBackgroundPrepareSessions bool
// configuration of the session pool.
SessionPoolConfig
// hc is the health checker
hc *healthChecker
// rand is a separately sourced random generator.
rand *rand.Rand
// numInUse is the number of sessions that are currently in use (checked out
// from the session pool).
numInUse uint64
// maxNumInUse is the maximum number of sessions in use concurrently in the
// current 10 minute interval.
maxNumInUse uint64
// lastResetTime is the start time of the window for recording maxNumInUse.
lastResetTime time.Time
// mw is the maintenance window containing statistics for the max number of
// sessions checked out of the pool during the last 10 minutes.
mw *maintenanceWindow
// tagMap is a map of all tags that are associated with the emitted metrics.
tagMap *tag.Map
}
// newSessionPool creates a new session pool.
func newSessionPool(sc *sessionClient, config SessionPoolConfig) (*sessionPool, error) {
if err := config.validate(); err != nil {
return nil, err
}
pool := &sessionPool{
sc: sc,
valid: true,
mayGetSession: make(chan struct{}),
SessionPoolConfig: config,
mw: newMaintenanceWindow(config.MaxOpened),
rand: rand.New(rand.NewSource(time.Now().UnixNano())),
}
if config.HealthCheckWorkers == 0 {
// With 10 workers and assuming average latency of 5ms for
// BeginTransaction, we will be able to prepare 2000 tx/sec in advance.
// If the rate of takeWriteSession is more than that, it will degrade to
// doing BeginTransaction inline.
//
// TODO: consider resizing the worker pool dynamically according to the load.
config.HealthCheckWorkers = 10
}
if config.HealthCheckInterval == 0 {
config.HealthCheckInterval = healthCheckIntervalMins * time.Minute
}
if config.healthCheckSampleInterval == 0 {
config.healthCheckSampleInterval = time.Minute
}
_, instance, database, err := parseDatabaseName(sc.database)
if err != nil {
return nil, err
}
// Errors should not prevent initializing the session pool.
ctx, err := tag.New(context.Background(),
tag.Upsert(tagClientID, sc.id),
tag.Upsert(tagDatabase, database),
tag.Upsert(tagInstance, instance),
tag.Upsert(tagLibVersion, version.Repo),
)
if err != nil {
logf(pool.sc.logger, "Failed to create tag map, error: %v", err)
}
pool.tagMap = tag.FromContext(ctx)
// On GCE VM, within the same region an healthcheck ping takes on average
// 10ms to finish, given a 5 minutes interval and 10 healthcheck workers, a
// healthChecker can effectively mantain
// 100 checks_per_worker/sec * 10 workers * 300 seconds = 300K sessions.
pool.hc = newHealthChecker(config.HealthCheckInterval, config.HealthCheckWorkers, config.healthCheckSampleInterval, pool)
// First initialize the pool before we indicate that the healthchecker is
// ready. This prevents the maintainer from starting before the pool has
// been initialized, which means that we guarantee that the initial
// sessions are created using BatchCreateSessions.
if config.MinOpened > 0 {
numSessions := minUint64(config.MinOpened, math.MaxInt32)
if err := pool.initPool(int32(numSessions)); err != nil {
return nil, err
}
}
pool.recordStat(context.Background(), MaxAllowedSessionsCount, int64(config.MaxOpened))
close(pool.hc.ready)
return pool, nil
}
func (p *sessionPool) recordStat(ctx context.Context, m *stats.Int64Measure, n int64) {
ctx = tag.NewContext(ctx, p.tagMap)
recordStat(ctx, m, n)
}
func (p *sessionPool) initPool(numSessions int32) error {
p.mu.Lock()
// Take budget before the actual session creation.
p.numOpened += uint64(numSessions)
p.recordStat(context.Background(), OpenSessionCount, int64(p.numOpened))
p.createReqs += uint64(numSessions)
p.mu.Unlock()
// Asynchronously create the initial sessions for the pool.
return p.sc.batchCreateSessions(numSessions, p)
}
// sessionReady is executed by the SessionClient when a session has been
// created and is ready to use. This method will add the new session to the
// pool and decrease the number of sessions that is being created.
func (p *sessionPool) sessionReady(s *session) {
p.mu.Lock()
defer p.mu.Unlock()
// Set this pool as the home pool of the session and register it with the
// health checker.
s.pool = p
p.hc.register(s)
p.createReqs--
// Insert the session at a random position in the pool to prevent all
// sessions affiliated with a channel to be placed at sequentially in the
// pool.
if p.idleList.Len() > 0 {
pos := rand.Intn(p.idleList.Len())
before := p.idleList.Front()
for i := 0; i < pos; i++ {
before = before.Next()
}
s.setIdleList(p.idleList.InsertBefore(s, before))
} else {
s.setIdleList(p.idleList.PushBack(s))
}
// Notify other waiters blocking on session creation.
close(p.mayGetSession)
p.mayGetSession = make(chan struct{})
}
// sessionCreationFailed is called by the SessionClient when the creation of one
// or more requested sessions finished with an error. sessionCreationFailed will
// decrease the number of sessions being created and notify any waiters that
// the session creation failed.
func (p *sessionPool) sessionCreationFailed(err error, numSessions int32) {
p.mu.Lock()
defer p.mu.Unlock()
p.createReqs -= uint64(numSessions)
p.numOpened -= uint64(numSessions)
p.recordStat(context.Background(), OpenSessionCount, int64(p.numOpened))
// Notify other waiters blocking on session creation.
close(p.mayGetSession)
p.mayGetSession = make(chan struct{})
}
// isValid checks if the session pool is still valid.
func (p *sessionPool) isValid() bool {
if p == nil {
return false
}
p.mu.Lock()
defer p.mu.Unlock()
return p.valid
}
// close marks the session pool as closed.
func (p *sessionPool) close() {
if p == nil {
return
}
p.mu.Lock()
if !p.valid {
p.mu.Unlock()
return
}
p.valid = false
p.mu.Unlock()
p.hc.close()
// destroy all the sessions
p.hc.mu.Lock()
allSessions := make([]*session, len(p.hc.queue.sessions))
copy(allSessions, p.hc.queue.sessions)
p.hc.mu.Unlock()
for _, s := range allSessions {
s.destroy(false)
}
}
// errInvalidSessionPool is the error for using an invalid session pool.
var errInvalidSessionPool = spannerErrorf(codes.InvalidArgument, "invalid session pool")
// errGetSessionTimeout returns error for context timeout during
// sessionPool.take().
var errGetSessionTimeout = spannerErrorf(codes.Canceled, "timeout / context canceled during getting session")
// newSessionHandle creates a new session handle for the given session for this
// session pool. The session handle will also hold a copy of the current call
// stack if the session pool has been configured to track the call stacks of
// sessions being checked out of the pool.
func (p *sessionPool) newSessionHandle(s *session) (sh *sessionHandle) {
sh = &sessionHandle{session: s, checkoutTime: time.Now()}
if p.TrackSessionHandles {
p.mu.Lock()
sh.trackedSessionHandle = p.trackedSessionHandles.PushBack(sh)
p.mu.Unlock()
sh.stack = debug.Stack()
}
return sh
}
// errGetSessionTimeout returns error for context timeout during
// sessionPool.take().
func (p *sessionPool) errGetSessionTimeout() error {
if p.TrackSessionHandles {
return p.errGetSessionTimeoutWithTrackedSessionHandles()
}
return p.errGetBasicSessionTimeout()
}
// errGetBasicSessionTimeout returns error for context timout during
// sessionPool.take() without any tracked sessionHandles.
func (p *sessionPool) errGetBasicSessionTimeout() error {
return spannerErrorf(codes.Canceled, "timeout / context canceled during getting session.\n"+
"Enable SessionPoolConfig.TrackSessionHandles if you suspect a session leak to get more information about the checked out sessions.")
}
// errGetSessionTimeoutWithTrackedSessionHandles returns error for context
// timout during sessionPool.take() including a stacktrace of each checked out
// session handle.
func (p *sessionPool) errGetSessionTimeoutWithTrackedSessionHandles() error {
err := spannerErrorf(codes.Canceled, "timeout / context canceled during getting session.")
err.(*Error).additionalInformation = p.getTrackedSessionHandleStacksLocked()
return err
}
// getTrackedSessionHandleStacksLocked returns a string containing the
// stacktrace of all currently checked out sessions of the pool. This method
// requires the caller to have locked p.mu.
func (p *sessionPool) getTrackedSessionHandleStacksLocked() string {
p.mu.Lock()
defer p.mu.Unlock()
stackTraces := ""
i := 1
element := p.trackedSessionHandles.Front()
for element != nil {
sh := element.Value.(*sessionHandle)
sh.mu.Lock()
if sh.stack != nil {
stackTraces = fmt.Sprintf("%s\n\nSession %d checked out of pool at %s by goroutine:\n%s", stackTraces, i, sh.checkoutTime.Format(time.RFC3339), sh.stack)
}
sh.mu.Unlock()
element = element.Next()
i++
}
return stackTraces
}
// shouldPrepareWriteLocked returns true if we should prepare more sessions for write.
func (p *sessionPool) shouldPrepareWriteLocked() bool {
return !p.disableBackgroundPrepareSessions && float64(p.numOpened)*p.WriteSessions > float64(p.idleWriteList.Len()+int(p.prepareReqs))
}
func (p *sessionPool) createSession(ctx context.Context) (*session, error) {
trace.TracePrintf(ctx, nil, "Creating a new session")
doneCreate := func(done bool) {
p.mu.Lock()
if !done {
// Session creation failed, give budget back.
p.numOpened--
p.recordStat(ctx, OpenSessionCount, int64(p.numOpened))
}
p.createReqs--
// Notify other waiters blocking on session creation.
close(p.mayGetSession)
p.mayGetSession = make(chan struct{})
p.mu.Unlock()
}
s, err := p.sc.createSession(ctx)
if err != nil {
doneCreate(false)
// Should return error directly because of the previous retries on
// CreateSession RPC.
// If the error is a timeout, there is a chance that the session was
// created on the server but is not known to the session pool. This
// session will then be garbage collected by the server after 1 hour.
return nil, err
}
s.pool = p
p.hc.register(s)
doneCreate(true)
return s, nil
}
func (p *sessionPool) isHealthy(s *session) bool {
if s.getNextCheck().Add(2 * p.hc.getInterval()).Before(time.Now()) {
// TODO: figure out if we need to schedule a new healthcheck worker here.
if err := s.ping(); isSessionNotFoundError(err) {
// The session is already bad, continue to fetch/create a new one.
s.destroy(false)
return false
}
p.hc.scheduledHC(s)
}
return true
}
// take returns a cached session if there are available ones; if there isn't
// any, it tries to allocate a new one. Session returned by take should be used
// for read operations.
func (p *sessionPool) take(ctx context.Context) (*sessionHandle, error) {
trace.TracePrintf(ctx, nil, "Acquiring a read-only session")
for {
var (
s *session
err error
)
p.mu.Lock()
if !p.valid {
p.mu.Unlock()
return nil, errInvalidSessionPool
}
if p.idleList.Len() > 0 {
// Idle sessions are available, get one from the top of the idle
// list.
s = p.idleList.Remove(p.idleList.Front()).(*session)
trace.TracePrintf(ctx, map[string]interface{}{"sessionID": s.getID()},
"Acquired read-only session")
} else if p.idleWriteList.Len() > 0 {
s = p.idleWriteList.Remove(p.idleWriteList.Front()).(*session)
trace.TracePrintf(ctx, map[string]interface{}{"sessionID": s.getID()},
"Acquired read-write session")
}
if s != nil {
s.setIdleList(nil)
numCheckedOut := p.currSessionsCheckedOutLocked()
p.mu.Unlock()
p.mw.updateMaxSessionsCheckedOutDuringWindow(numCheckedOut)
// From here, session is no longer in idle list, so healthcheck
// workers won't destroy it. If healthcheck workers failed to
// schedule healthcheck for the session timely, do the check here.
// Because session check is still much cheaper than session
// creation, they should be reused as much as possible.
if !p.isHealthy(s) {
continue
}
p.incNumInUse(ctx)
return p.newSessionHandle(s), nil
}
// Idle list is empty, block if session pool has reached max session
// creation concurrency or max number of open sessions.
if (p.MaxOpened > 0 && p.numOpened >= p.MaxOpened) || (p.MaxBurst > 0 && p.createReqs >= p.MaxBurst) {
mayGetSession := p.mayGetSession
p.mu.Unlock()
trace.TracePrintf(ctx, nil, "Waiting for read-only session to become available")
select {
case <-ctx.Done():
trace.TracePrintf(ctx, nil, "Context done waiting for session")
p.recordStat(ctx, GetSessionTimeoutsCount, 1)
return nil, p.errGetSessionTimeout()
case <-mayGetSession:
}
continue
}
// Take budget before the actual session creation.
p.numOpened++
// Creating a new session that will be returned directly to the client
// means that the max number of sessions in use also increases.
numCheckedOut := p.currSessionsCheckedOutLocked()
p.recordStat(ctx, OpenSessionCount, int64(p.numOpened))
p.createReqs++
p.mu.Unlock()
p.mw.updateMaxSessionsCheckedOutDuringWindow(numCheckedOut)
if s, err = p.createSession(ctx); err != nil {
trace.TracePrintf(ctx, nil, "Error creating session: %v", err)
return nil, toSpannerError(err)
}
trace.TracePrintf(ctx, map[string]interface{}{"sessionID": s.getID()},
"Created session")
p.incNumInUse(ctx)
return p.newSessionHandle(s), nil
}
}
// takeWriteSession returns a write prepared cached session if there are
// available ones; if there isn't any, it tries to allocate a new one. Session
// returned should be used for read write transactions.
func (p *sessionPool) takeWriteSession(ctx context.Context) (*sessionHandle, error) {
trace.TracePrintf(ctx, nil, "Acquiring a read-write session")
for {
var (
s *session
err error
)
p.mu.Lock()
if !p.valid {
p.mu.Unlock()
return nil, errInvalidSessionPool
}
if p.idleWriteList.Len() > 0 {
// Idle sessions are available, get one from the top of the idle
// list.
s = p.idleWriteList.Remove(p.idleWriteList.Front()).(*session)
trace.TracePrintf(ctx, map[string]interface{}{"sessionID": s.getID()}, "Acquired read-write session")
} else if p.idleList.Len() > 0 {
s = p.idleList.Remove(p.idleList.Front()).(*session)
trace.TracePrintf(ctx, map[string]interface{}{"sessionID": s.getID()}, "Acquired read-only session")
}
if s != nil {
s.setIdleList(nil)
numCheckedOut := p.currSessionsCheckedOutLocked()
p.mu.Unlock()
p.mw.updateMaxSessionsCheckedOutDuringWindow(numCheckedOut)
// From here, session is no longer in idle list, so healthcheck
// workers won't destroy it. If healthcheck workers failed to
// schedule healthcheck for the session timely, do the check here.
// Because session check is still much cheaper than session
// creation, they should be reused as much as possible.
if !p.isHealthy(s) {
continue
}
} else {
// Idle list is empty, block if session pool has reached max session
// creation concurrency or max number of open sessions.
if (p.MaxOpened > 0 && p.numOpened >= p.MaxOpened) || (p.MaxBurst > 0 && p.createReqs >= p.MaxBurst) {
mayGetSession := p.mayGetSession
p.mu.Unlock()
trace.TracePrintf(ctx, nil, "Waiting for read-write session to become available")
select {
case <-ctx.Done():
trace.TracePrintf(ctx, nil, "Context done waiting for session")
p.recordStat(ctx, GetSessionTimeoutsCount, 1)
return nil, p.errGetSessionTimeout()
case <-mayGetSession:
}
continue
}
// Take budget before the actual session creation.
p.numOpened++
// Creating a new session that will be returned directly to the client
// means that the max number of sessions in use also increases.
numCheckedOut := p.currSessionsCheckedOutLocked()
p.recordStat(ctx, OpenSessionCount, int64(p.numOpened))
p.createReqs++
p.mu.Unlock()
p.mw.updateMaxSessionsCheckedOutDuringWindow(numCheckedOut)
if s, err = p.createSession(ctx); err != nil {
trace.TracePrintf(ctx, nil, "Error creating session: %v", err)
return nil, toSpannerError(err)
}
trace.TracePrintf(ctx, map[string]interface{}{"sessionID": s.getID()},
"Created session")
}
if !s.isWritePrepared() {
if err = s.prepareForWrite(ctx); err != nil {
if isSessionNotFoundError(err) {
s.destroy(false)
trace.TracePrintf(ctx, map[string]interface{}{"sessionID": s.getID()},
"Session not found for write")
return nil, toSpannerError(err)
}
s.recycle()
trace.TracePrintf(ctx, map[string]interface{}{"sessionID": s.getID()},
"Error preparing session for write")
return nil, toSpannerError(err)
}
}
p.incNumInUse(ctx)
return p.newSessionHandle(s), nil
}
}
// recycle puts session s back to the session pool's idle list, it returns true
// if the session pool successfully recycles session s.
func (p *sessionPool) recycle(s *session) bool {
p.mu.Lock()
defer p.mu.Unlock()
if !s.isValid() || !p.valid {
// Reject the session if session is invalid or pool itself is invalid.
return false
}
// Put session at the top of the list to be handed out in LIFO order for load balancing
// across channels.
if s.isWritePrepared() {
s.setIdleList(p.idleWriteList.PushFront(s))
} else {
s.setIdleList(p.idleList.PushFront(s))
}
// Broadcast that a session has been returned to idle list.
close(p.mayGetSession)
p.mayGetSession = make(chan struct{})
p.numInUse--
p.recordStat(context.Background(), InUseSessionsCount, int64(p.numInUse))
p.recordStat(context.Background(), ReleasedSessionsCount, 1)
return true
}
// remove atomically removes session s from the session pool and invalidates s.
// If isExpire == true, the removal is triggered by session expiration and in
// such cases, only idle sessions can be removed.
func (p *sessionPool) remove(s *session, isExpire bool) bool {
p.mu.Lock()
defer p.mu.Unlock()
if isExpire && (p.numOpened <= p.MinOpened || s.getIdleList() == nil) {
// Don't expire session if the session is not in idle list (in use), or
// if number of open sessions is going below p.MinOpened.
return false
}
ol := s.setIdleList(nil)
// If the session is in the idlelist, remove it.
if ol != nil {
// Remove from whichever list it is in.
p.idleList.Remove(ol)
p.idleWriteList.Remove(ol)
}
if s.invalidate() {
// Decrease the number of opened sessions.
p.numOpened--
p.recordStat(context.Background(), OpenSessionCount, int64(p.numOpened))
// Broadcast that a session has been destroyed.
close(p.mayGetSession)
p.mayGetSession = make(chan struct{})
return true
}
return false
}
func (p *sessionPool) currSessionsCheckedOutLocked() uint64 {
return p.numOpened - uint64(p.idleList.Len()) - uint64(p.idleWriteList.Len())
}
func (p *sessionPool) incNumInUse(ctx context.Context) {
p.mu.Lock()
p.incNumInUseLocked(ctx)
p.mu.Unlock()
}
func (p *sessionPool) incNumInUseLocked(ctx context.Context) {
p.numInUse++
p.recordStat(ctx, InUseSessionsCount, int64(p.numInUse))
p.recordStat(ctx, AcquiredSessionsCount, 1)
if p.numInUse > p.maxNumInUse {
p.maxNumInUse = p.numInUse
p.recordStat(ctx, MaxInUseSessionsCount, int64(p.maxNumInUse))
}
}
// hcHeap implements heap.Interface. It is used to create the priority queue for
// session healthchecks.
type hcHeap struct {
sessions []*session
}
// Len implements heap.Interface.Len.
func (h hcHeap) Len() int {
return len(h.sessions)
}
// Less implements heap.Interface.Less.
func (h hcHeap) Less(i, j int) bool {
return h.sessions[i].getNextCheck().Before(h.sessions[j].getNextCheck())
}
// Swap implements heap.Interface.Swap.
func (h hcHeap) Swap(i, j int) {
h.sessions[i], h.sessions[j] = h.sessions[j], h.sessions[i]
h.sessions[i].setHcIndex(i)
h.sessions[j].setHcIndex(j)
}
// Push implements heap.Interface.Push.
func (h *hcHeap) Push(s interface{}) {
ns := s.(*session)
ns.setHcIndex(len(h.sessions))
h.sessions = append(h.sessions, ns)
}
// Pop implements heap.Interface.Pop.
func (h *hcHeap) Pop() interface{} {
old := h.sessions
n := len(old)
s := old[n-1]
h.sessions = old[:n-1]
s.setHcIndex(-1)
return s
}
// maintenanceWindowSize specifies the number of health check cycles that
// defines a maintenance window. The maintenance window keeps track of a
// rolling set of numbers for the number of maximum checked out sessions during
// the maintenance window. This is used by the maintainer to determine the
// number of sessions to create or delete at the end of each health check
// cycle.
const maintenanceWindowSize = 10
// maintenanceWindow contains the statistics that are gathered during a health
// check maintenance window.
type maintenanceWindow struct {
mu sync.Mutex
// maxSessionsCheckedOut contains the maximum number of sessions that was
// checked out of the session pool during a health check cycle. This number
// indicates the number of sessions that was actually needed by the pool to
// serve the load during that cycle. The values are kept as a rolling set
// containing the values for the past 10 cycles (minutes). The maintainer
// uses these values to determine the number of sessions to keep at the end
// of each cycle.
maxSessionsCheckedOut [maintenanceWindowSize]uint64
}
// maxSessionsCheckedOutDuringWindow returns the maximum number of sessions
// that has been checked out during the last maintenance window of 10 cycles
// (minutes).
func (mw *maintenanceWindow) maxSessionsCheckedOutDuringWindow() uint64 {
mw.mu.Lock()
defer mw.mu.Unlock()
var max uint64
for _, cycleMax := range mw.maxSessionsCheckedOut {
max = maxUint64(max, cycleMax)
}
return max
}
// updateMaxSessionsCheckedOutDuringWindow updates the maximum number of
// sessions that has been checked out of the pool during the current
// cycle of the maintenance window. A maintenance window consists of 10
// maintenance cycles. Each cycle keeps track of the max number of sessions in
// use during that cycle. The rolling maintenance window of 10 cycles is used
// to determine the number of sessions to keep at the end of a cycle by
// calculating the max in use during the last 10 cycles.
func (mw *maintenanceWindow) updateMaxSessionsCheckedOutDuringWindow(currNumSessionsCheckedOut uint64) {
mw.mu.Lock()
defer mw.mu.Unlock()
mw.maxSessionsCheckedOut[0] = maxUint64(currNumSessionsCheckedOut, mw.maxSessionsCheckedOut[0])
}
// startNewCycle starts a new health check cycle with the specified number of
// checked out sessions as its initial value.
func (mw *maintenanceWindow) startNewCycle(currNumSessionsCheckedOut uint64) {
mw.mu.Lock()
defer mw.mu.Unlock()
copy(mw.maxSessionsCheckedOut[1:], mw.maxSessionsCheckedOut[:9])
mw.maxSessionsCheckedOut[0] = currNumSessionsCheckedOut
}
// newMaintenanceWindow creates a new maintenance window with all values for
// maxSessionsCheckedOut set to maxOpened. This ensures that a complete
// maintenance window must pass before the maintainer will start to delete any
// sessions.
func newMaintenanceWindow(maxOpened uint64) *maintenanceWindow {
mw := &maintenanceWindow{}
// Initialize the rolling window with max values to prevent the maintainer
// from deleting sessions before a complete window of 10 cycles has
// finished.
for i := 0; i < maintenanceWindowSize; i++ {
mw.maxSessionsCheckedOut[i] = maxOpened
}
return mw
}
// healthChecker performs periodical healthchecks on registered sessions.
type healthChecker struct {
// mu protects concurrent access to healthChecker.
mu sync.Mutex
// queue is the priority queue for session healthchecks. Sessions with lower
// nextCheck rank higher in the queue.
queue hcHeap
// interval is the average interval between two healthchecks on a session.
interval time.Duration
// workers is the number of concurrent healthcheck workers.
workers int
// waitWorkers waits for all healthcheck workers to exit
waitWorkers sync.WaitGroup
// pool is the underlying session pool.
pool *sessionPool
// sampleInterval is the interval of sampling by the maintainer.
sampleInterval time.Duration
// ready is used to signal that maintainer can start running.
ready chan struct{}
// done is used to signal that health checker should be closed.
done chan struct{}
// once is used for closing channel done only once.
once sync.Once
maintainerCancel func()
}
// newHealthChecker initializes new instance of healthChecker.
func newHealthChecker(interval time.Duration, workers int, sampleInterval time.Duration, pool *sessionPool) *healthChecker {
if workers <= 0 {
workers = 1
}
hc := &healthChecker{
interval: interval,
workers: workers,
pool: pool,
sampleInterval: sampleInterval,
ready: make(chan struct{}),
done: make(chan struct{}),
maintainerCancel: func() {},
}
hc.waitWorkers.Add(1)
go hc.maintainer()
for i := 1; i <= hc.workers; i++ {
hc.waitWorkers.Add(1)
go hc.worker(i)
}
return hc
}
// close closes the healthChecker and waits for all healthcheck workers to exit.
func (hc *healthChecker) close() {
hc.mu.Lock()
hc.maintainerCancel()
hc.mu.Unlock()
hc.once.Do(func() { close(hc.done) })
hc.waitWorkers.Wait()
}
// isClosing checks if a healthChecker is already closing.
func (hc *healthChecker) isClosing() bool {
select {
case <-hc.done:
return true
default:
return false
}
}
// getInterval gets the healthcheck interval.
func (hc *healthChecker) getInterval() time.Duration {
hc.mu.Lock()
defer hc.mu.Unlock()
return hc.interval
}
// scheduledHCLocked schedules next healthcheck on session s with the assumption
// that hc.mu is being held.
func (hc *healthChecker) scheduledHCLocked(s *session) {
var constPart, randPart float64
if !s.firstHCDone {
// The first check will be scheduled in a large range to make requests
// more evenly distributed. The first healthcheck will be scheduled
// after [interval*0.2, interval*1.1) ns.
constPart = float64(hc.interval) * 0.2
randPart = hc.pool.rand.Float64() * float64(hc.interval) * 0.9
s.firstHCDone = true
} else {
// The next healthcheck will be scheduled after
// [interval*0.9, interval*1.1) ns.
constPart = float64(hc.interval) * 0.9
randPart = hc.pool.rand.Float64() * float64(hc.interval) * 0.2
}
// math.Ceil makes the value to be at least 1 ns.
nsFromNow := int64(math.Ceil(constPart + randPart))
s.setNextCheck(time.Now().Add(time.Duration(nsFromNow)))
if hi := s.getHcIndex(); hi != -1 {
// Session is still being tracked by healthcheck workers.
heap.Fix(&hc.queue, hi)
}
}
// scheduledHC schedules next healthcheck on session s. It is safe to be called
// concurrently.
func (hc *healthChecker) scheduledHC(s *session) {
hc.mu.Lock()
defer hc.mu.Unlock()
hc.scheduledHCLocked(s)
}
// register registers a session with healthChecker for periodical healthcheck.
func (hc *healthChecker) register(s *session) {
hc.mu.Lock()
defer hc.mu.Unlock()
hc.scheduledHCLocked(s)
heap.Push(&hc.queue, s)
}
// unregister unregisters a session from healthcheck queue.
func (hc *healthChecker) unregister(s *session) {
hc.mu.Lock()
defer hc.mu.Unlock()
oi := s.setHcIndex(-1)
if oi >= 0 {
heap.Remove(&hc.queue, oi)
}
}
// markDone marks that health check for session has been performed.
func (hc *healthChecker) markDone(s *session) {
hc.mu.Lock()
defer hc.mu.Unlock()
s.checkingHealth = false
}
// healthCheck checks the health of the session and pings it if needed.
func (hc *healthChecker) healthCheck(s *session) {
defer hc.markDone(s)
if !s.pool.isValid() {
// Session pool is closed, perform a garbage collection.
s.destroy(false)
return
}
if err := s.ping(); isSessionNotFoundError(err) {
// Ping failed, destroy the session.
s.destroy(false)
}
}
// worker performs the healthcheck on sessions in healthChecker's priority
// queue.
func (hc *healthChecker) worker(i int) {
// Returns a session which we should ping to keep it alive.
getNextForPing := func() *session {
hc.pool.mu.Lock()
defer hc.pool.mu.Unlock()
hc.mu.Lock()
defer hc.mu.Unlock()
if hc.queue.Len() <= 0 {
// Queue is empty.
return nil
}
s := hc.queue.sessions[0]
if s.getNextCheck().After(time.Now()) && hc.pool.valid {
// All sessions have been checked recently.
return nil
}
hc.scheduledHCLocked(s)
if !s.checkingHealth {
s.checkingHealth = true
return s
}
return nil
}
// Returns a session which we should prepare for write.
getNextForTx := func() *session {
hc.pool.mu.Lock()
defer hc.pool.mu.Unlock()
if hc.pool.shouldPrepareWriteLocked() {
if hc.pool.idleList.Len() > 0 && hc.pool.valid {
hc.mu.Lock()
defer hc.mu.Unlock()
if hc.pool.idleList.Front().Value.(*session).checkingHealth {
return nil
}
session := hc.pool.idleList.Remove(hc.pool.idleList.Front()).(*session)
session.checkingHealth = true
hc.pool.prepareReqs++
hc.pool.incNumInUseLocked(context.Background())
return session
}
}
return nil
}
for {
if hc.isClosing() {
// Exit when the pool has been closed and all sessions have been
// destroyed or when health checker has been closed.
hc.waitWorkers.Done()
return
}
ws := getNextForTx()
if ws != nil {
ctx, cancel := context.WithTimeout(context.Background(), time.Minute)
err := ws.prepareForWrite(ctx)
cancel()
if err != nil {
// Skip handling prepare error, session can be prepared in next
// cycle.
// Don't log about permission errors, which may be expected
// (e.g. using read-only auth).
serr := toSpannerError(err).(*Error)
if serr.Code != codes.PermissionDenied {
logf(hc.pool.sc.logger, "Failed to prepare session, error: %v", serr)
}
}
hc.pool.recycle(ws)
hc.pool.mu.Lock()
hc.pool.prepareReqs--
hc.pool.mu.Unlock()
hc.markDone(ws)
}
rs := getNextForPing()
if rs == nil {
if ws == nil {
// No work to be done so sleep to avoid burning CPU.
pause := int64(100 * time.Millisecond)
if pause > int64(hc.interval) {
pause = int64(hc.interval)
}
select {
case <-time.After(time.Duration(rand.Int63n(pause) + pause/2)):
case <-hc.done:
}
}
continue
}
hc.healthCheck(rs)
}
}
// maintainer maintains the number of sessions in the pool based on the session
// pool configuration and the current and historical number of sessions checked
// out of the pool. The maintainer will:
// 1. Ensure that the session pool contains at least MinOpened sessions.
// 2. If the current number of sessions in the pool exceeds the greatest number
// of checked out sessions (=sessions in use) during the last 10 minutes,
// and the delta is larger than MaxIdleSessions, the maintainer will reduce
// the number of sessions to maxSessionsInUseDuringWindow+MaxIdleSessions.
func (hc *healthChecker) maintainer() {
// Wait until the pool is ready.
<-hc.ready
for iteration := uint64(0); ; iteration++ {
if hc.isClosing() {
hc.waitWorkers.Done()
return
}
hc.pool.mu.Lock()
currSessionsOpened := hc.pool.numOpened
maxIdle := hc.pool.MaxIdle
minOpened := hc.pool.MinOpened
// Reset the start time for recording the maximum number of sessions
// in the pool.
now := time.Now()
if now.After(hc.pool.lastResetTime.Add(10 * time.Minute)) {
hc.pool.maxNumInUse = hc.pool.numInUse
hc.pool.recordStat(context.Background(), MaxInUseSessionsCount, int64(hc.pool.maxNumInUse))
hc.pool.lastResetTime = now
}
hc.pool.mu.Unlock()
// Get the maximum number of sessions in use during the current
// maintenance window.
maxSessionsInUseDuringWindow := hc.pool.mw.maxSessionsCheckedOutDuringWindow()
hc.mu.Lock()
ctx, cancel := context.WithTimeout(context.Background(), hc.sampleInterval)
hc.maintainerCancel = cancel
hc.mu.Unlock()
// Grow or shrink pool if needed.
// The number of sessions in the pool should be in the range
// [Config.MinOpened, Config.MaxIdle+maxSessionsInUseDuringWindow]
if currSessionsOpened < minOpened {
hc.growPool(ctx, minOpened)
} else if maxIdle+maxSessionsInUseDuringWindow < currSessionsOpened {
hc.shrinkPool(ctx, maxIdle+maxSessionsInUseDuringWindow)
}
select {
case <-ctx.Done():
case <-hc.done:
cancel()
}
// Cycle the maintenance window. This will remove the oldest cycle and
// add a new cycle at the beginning of the maintenance window with the
// currently checked out number of sessions as the max number of
// sessions in use in this cycle. This value will be increased during
// the next cycle if it increases.
hc.pool.mu.Lock()
currSessionsInUse := hc.pool.currSessionsCheckedOutLocked()
hc.pool.mu.Unlock()
hc.pool.mw.startNewCycle(currSessionsInUse)
}
}
// growPool grows the number of sessions in the pool to the specified number of
// sessions. It timeouts on sampleInterval.
func (hc *healthChecker) growPool(ctx context.Context, growToNumSessions uint64) {
// Calculate the max number of sessions to create as a safeguard against
// other processes that could be deleting sessions concurrently.
hc.pool.mu.Lock()
maxSessionsToCreate := int(growToNumSessions - hc.pool.numOpened)
hc.pool.mu.Unlock()
var created int
for {
if ctx.Err() != nil {
return
}
p := hc.pool
p.mu.Lock()
// Take budget before the actual session creation.
if growToNumSessions <= p.numOpened || created >= maxSessionsToCreate {
p.mu.Unlock()
break
}
p.numOpened++
p.recordStat(ctx, OpenSessionCount, int64(p.numOpened))
p.createReqs++
shouldPrepareWrite := p.shouldPrepareWriteLocked()
p.mu.Unlock()
var (
s *session
err error
)
createContext, cancel := context.WithTimeout(context.Background(), time.Minute)
if s, err = p.createSession(createContext); err != nil {
cancel()
logf(p.sc.logger, "Failed to create session, error: %v", toSpannerError(err))
continue
}
cancel()
created++
if shouldPrepareWrite {
prepareContext, cancel := context.WithTimeout(context.Background(), time.Minute)
if err = s.prepareForWrite(prepareContext); err != nil {
cancel()
p.recycle(s)
// Don't log about permission errors, which may be expected
// (e.g. using read-only auth).
serr := toSpannerError(err).(*Error)
if serr.Code != codes.PermissionDenied {
logf(p.sc.logger, "Failed to prepare session, error: %v", serr)
}
continue
}
cancel()
}
p.recycle(s)
}
}
// shrinkPool scales down the session pool. The method will stop deleting
// sessions when shrinkToNumSessions number of sessions in the pool has
// been reached. The method will also stop deleting sessions if it detects that
// another process has started creating sessions for the pool again, for
// example through the take() method.
func (hc *healthChecker) shrinkPool(ctx context.Context, shrinkToNumSessions uint64) {
hc.pool.mu.Lock()
maxSessionsToDelete := int(hc.pool.numOpened - shrinkToNumSessions)
hc.pool.mu.Unlock()
var deleted int
var prevNumOpened uint64 = math.MaxUint64
for {
if ctx.Err() != nil {
return
}
p := hc.pool
p.mu.Lock()
// Check if the number of open sessions has increased. If it has, we
// should stop deleting sessions, as the load has increased and
// additional sessions are needed.
if p.numOpened >= prevNumOpened {
p.mu.Unlock()
break
}
prevNumOpened = p.numOpened
// Check on both whether we have reached the number of open sessions as
// well as the number of sessions to delete, in case sessions have been
// deleted by other methods because they have expired or deemed
// invalid.
if shrinkToNumSessions >= p.numOpened || deleted >= maxSessionsToDelete {
p.mu.Unlock()
break
}
var s *session
if p.idleList.Len() > 0 {
s = p.idleList.Front().Value.(*session)
} else if p.idleWriteList.Len() > 0 {
s = p.idleWriteList.Front().Value.(*session)
}
p.mu.Unlock()
if s != nil {
deleted++
// destroy session as expire.
s.destroy(true)
} else {
break
}
}
}
// maxUint64 returns the maximum of two uint64.
func maxUint64(a, b uint64) uint64 {
if a > b {
return a
}
return b
}
// minUint64 returns the minimum of two uint64.
func minUint64(a, b uint64) uint64 {
if a > b {
return b
}
return a
}
// sessionResourceType is the type name of Spanner sessions.
const sessionResourceType = "type.googleapis.com/google.spanner.v1.Session"
// isSessionNotFoundError returns true if the given error is a
// `Session not found` error.
func isSessionNotFoundError(err error) bool {
if err == nil {
return false
}
if ErrCode(err) == codes.NotFound {
if rt, ok := extractResourceType(err); ok {
return rt == sessionResourceType
}
}
return false
}
|