1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
// Copyright 2025 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package remoteconfig
import (
"crypto/sha256"
"encoding/json"
"errors"
"fmt"
"log"
"math/big"
"regexp"
"strconv"
"strings"
)
type conditionEvaluator struct {
evaluationContext map[string]any
conditions []namedCondition
}
const (
maxConditionRecursionDepth = 10
rootNestingLevel = 0
doublePrecision = 64
whiteSpace = " "
segmentSeparator = "."
maxPossibleSegments = 5
)
var (
errTooManySegments = errors.New("number of segments exceeds maximum allowed length")
errNegativeSegment = errors.New("segment cannot be negative")
errInvalidCustomSignal = errors.New("missing operator, key, or target values for custom signal condition")
)
const (
randomizationID = "randomizationID"
totalMicroPercentiles = 100_000_000
lessThanOrEqual = "LESS_OR_EQUAL"
greaterThan = "GREATER_THAN"
between = "BETWEEN"
)
const (
stringContains = "STRING_CONTAINS"
stringDoesNotContain = "STRING_DOES_NOT_CONTAIN"
stringExactlyMatches = "STRING_EXACTLY_MATCHES"
stringContainsRegex = "STRING_CONTAINS_REGEX"
numericLessThan = "NUMERIC_LESS_THAN"
numericLessThanEqual = "NUMERIC_LESS_EQUAL"
numericEqual = "NUMERIC_EQUAL"
numericNotEqual = "NUMERIC_NOT_EQUAL"
numericGreaterThan = "NUMERIC_GREATER_THAN"
numericGreaterEqual = "NUMERIC_GREATER_EQUAL"
semanticVersionLessThan = "SEMANTIC_VERSION_LESS_THAN"
semanticVersionLessEqual = "SEMANTIC_VERSION_LESS_EQUAL"
semanticVersionEqual = "SEMANTIC_VERSION_EQUAL"
semanticVersionNotEqual = "SEMANTIC_VERSION_NOT_EQUAL"
semanticVersionGreaterThan = "SEMANTIC_VERSION_GREATER_THAN"
semanticVersionGreaterEqual = "SEMANTIC_VERSION_GREATER_EQUAL"
)
func (ce *conditionEvaluator) evaluateConditions() map[string]bool {
evaluatedConditions := make(map[string]bool)
for _, condition := range ce.conditions {
evaluatedConditions[condition.Name] = ce.evaluateCondition(condition.Condition, rootNestingLevel)
}
return evaluatedConditions
}
func (ce *conditionEvaluator) evaluateCondition(condition *oneOfCondition, nestingLevel int) bool {
if nestingLevel >= maxConditionRecursionDepth {
log.Println("Maximum recursion depth is exceeded.")
return false
}
if condition.Boolean != nil {
return *condition.Boolean
} else if condition.OrCondition != nil {
return ce.evaluateOrCondition(condition.OrCondition, nestingLevel+1)
} else if condition.AndCondition != nil {
return ce.evaluateAndCondition(condition.AndCondition, nestingLevel+1)
} else if condition.Percent != nil {
return ce.evaluatePercentCondition(condition.Percent)
} else if condition.CustomSignal != nil {
return ce.evaluateCustomSignalCondition(condition.CustomSignal)
}
log.Println("Unknown condition type encountered.")
return false
}
func (ce *conditionEvaluator) evaluateOrCondition(orCondition *orCondition, nestingLevel int) bool {
for _, condition := range orCondition.Conditions {
result := ce.evaluateCondition(&condition, nestingLevel+1)
if result {
return true
}
}
return false
}
func (ce *conditionEvaluator) evaluateAndCondition(andCondition *andCondition, nestingLevel int) bool {
for _, condition := range andCondition.Conditions {
result := ce.evaluateCondition(&condition, nestingLevel+1)
if !result {
return false
}
}
return true
}
func (ce *conditionEvaluator) evaluatePercentCondition(percentCondition *percentCondition) bool {
if rid, ok := ce.evaluationContext[randomizationID].(string); ok {
if percentCondition.PercentOperator == "" {
log.Println("Missing percent operator for percent condition.")
return false
}
instanceMicroPercentile := computeInstanceMicroPercentile(percentCondition.Seed, rid)
switch percentCondition.PercentOperator {
case lessThanOrEqual:
return instanceMicroPercentile <= percentCondition.MicroPercent
case greaterThan:
return instanceMicroPercentile > percentCondition.MicroPercent
case between:
return instanceMicroPercentile > percentCondition.MicroPercentRange.MicroPercentLowerBound && instanceMicroPercentile <= percentCondition.MicroPercentRange.MicroPercentUpperBound
default:
log.Printf("Unknown percent operator: %s\n", percentCondition.PercentOperator)
return false
}
}
log.Println("Missing or invalid randomizationID (requires a string value) for percent condition.")
return false
}
func computeInstanceMicroPercentile(seed string, randomizationID string) uint32 {
var sb strings.Builder
if len(seed) > 0 {
sb.WriteString(seed)
sb.WriteRune('.')
}
sb.WriteString(randomizationID)
stringToHash := sb.String()
hash := sha256.New()
hash.Write([]byte(stringToHash))
// Calculate the final SHA-256 hash as a byte slice (32 bytes).
// Convert to a big.Int. The "0x" prefix is implicit in the conversion from hex to big.Int.
hashBigInt := new(big.Int).SetBytes(hash.Sum(nil))
instanceMicroPercentileBigInt := new(big.Int).Mod(hashBigInt, big.NewInt(totalMicroPercentiles))
// Safely convert to uint32 since the range of instanceMicroPercentile is 0 to 100_000_000; range of uint32 is 0 to 4_294_967_295.
return uint32(instanceMicroPercentileBigInt.Int64())
}
func (ce *conditionEvaluator) evaluateCustomSignalCondition(customSignalCondition *customSignalCondition) bool {
if err := customSignalCondition.isValid(); err != nil {
log.Println(err)
return false
}
actualValue, ok := ce.evaluationContext[customSignalCondition.CustomSignalKey]
if !ok {
log.Printf("Custom signal key: %s, missing from context\n", customSignalCondition.CustomSignalKey)
return false
}
switch customSignalCondition.CustomSignalOperator {
case stringContains:
return compareStrings(customSignalCondition.TargetCustomSignalValues, actualValue, func(actualValue, target string) bool { return strings.Contains(actualValue, target) })
case stringDoesNotContain:
return !compareStrings(customSignalCondition.TargetCustomSignalValues, actualValue, func(actualValue, target string) bool { return strings.Contains(actualValue, target) })
case stringExactlyMatches:
return compareStrings(customSignalCondition.TargetCustomSignalValues, actualValue, func(actualValue, target string) bool {
return strings.Trim(actualValue, whiteSpace) == strings.Trim(target, whiteSpace)
})
case stringContainsRegex:
return compareStrings(customSignalCondition.TargetCustomSignalValues, actualValue, func(actualValue, targetPattern string) bool {
result, err := regexp.MatchString(targetPattern, actualValue)
if err != nil {
return false
}
return result
})
// For numeric operators only one target value is allowed.
case numericLessThan:
return compareNumbers(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result < 0 })
case numericLessThanEqual:
return compareNumbers(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result <= 0 })
case numericEqual:
return compareNumbers(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result == 0 })
case numericNotEqual:
return compareNumbers(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result != 0 })
case numericGreaterThan:
return compareNumbers(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result > 0 })
case numericGreaterEqual:
return compareNumbers(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result >= 0 })
// For semantic operators only one target value is allowed.
case semanticVersionLessThan:
return compareSemanticVersion(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result < 0 })
case semanticVersionLessEqual:
return compareSemanticVersion(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result <= 0 })
case semanticVersionEqual:
return compareSemanticVersion(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result == 0 })
case semanticVersionNotEqual:
return compareSemanticVersion(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result != 0 })
case semanticVersionGreaterThan:
return compareSemanticVersion(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result > 0 })
case semanticVersionGreaterEqual:
return compareSemanticVersion(customSignalCondition.TargetCustomSignalValues[0], actualValue, func(result int) bool { return result >= 0 })
}
log.Printf("Unknown custom signal operator: %s\n", customSignalCondition.CustomSignalOperator)
return false
}
func (cs *customSignalCondition) isValid() error {
if cs.CustomSignalOperator == "" || cs.CustomSignalKey == "" || len(cs.TargetCustomSignalValues) == 0 {
return errInvalidCustomSignal
}
return nil
}
func compareStrings(targetCustomSignalValues []string, actualValue any, predicateFn func(actualValue, target string) bool) bool {
csValStr, ok := actualValue.(string)
if !ok {
if jsonBytes, err := json.Marshal(actualValue); err == nil {
csValStr = string(jsonBytes)
} else {
log.Printf("Failed to parse custom signal value '%v' as a string : %v\n", actualValue, err)
return false
}
}
for _, target := range targetCustomSignalValues {
if predicateFn(csValStr, target) {
return true
}
}
return false
}
func compareNumbers(targetCustomSignalValue string, actualValue any, predicateFn func(result int) bool) bool {
targetFloat, err := strconv.ParseFloat(strings.Trim(targetCustomSignalValue, whiteSpace), doublePrecision)
if err != nil {
log.Printf("Failed to convert target custom signal value '%v' from string to number: %v", targetCustomSignalValue, err)
return false
}
var actualValFloat float64
switch actualValue := actualValue.(type) {
case float32:
actualValFloat = float64(actualValue)
case float64:
actualValFloat = actualValue
case int8:
actualValFloat = float64(actualValue)
case int:
actualValFloat = float64(actualValue)
case int16:
actualValFloat = float64(actualValue)
case int32:
actualValFloat = float64(actualValue)
case int64:
actualValFloat = float64(actualValue)
case uint8:
actualValFloat = float64(actualValue)
case uint:
actualValFloat = float64(actualValue)
case uint16:
actualValFloat = float64(actualValue)
case uint32:
actualValFloat = float64(actualValue)
case uint64:
actualValFloat = float64(actualValue)
case bool:
if actualValue {
actualValFloat = 1
} else {
actualValFloat = 0
}
case string:
actualValFloat, err = strconv.ParseFloat(strings.Trim(actualValue, whiteSpace), doublePrecision)
if err != nil {
log.Printf("Failed to convert custom signal value '%v' from string to number: %v", actualValue, err)
return false
}
default:
log.Printf("Cannot parse custom signal value '%v' of type %T as a number", actualValue, actualValue)
return false
}
result := 0
if actualValFloat > targetFloat {
result = 1
} else if actualValFloat < targetFloat {
result = -1
}
return predicateFn(result)
}
func compareSemanticVersion(targetValue string, actualValue any, predicateFn func(result int) bool) bool {
targetSemVer, err := transformVersionToSegments(strings.Trim(targetValue, whiteSpace))
if err != nil {
log.Printf("Error transforming target semantic version %q: %v\n", targetValue, err)
return false
}
actualValueStr := fmt.Sprintf("%v", actualValue)
actualSemVer, err := transformVersionToSegments(strings.Trim(actualValueStr, whiteSpace))
if err != nil {
log.Printf("Error transforming custom signal value '%v' to semantic version: %v\n", actualValue, err)
return false
}
for idx := 0; idx < maxPossibleSegments; idx++ {
if actualSemVer[idx] > targetSemVer[idx] {
return predicateFn(1)
} else if actualSemVer[idx] < targetSemVer[idx] {
return predicateFn(-1)
}
}
return predicateFn(0)
}
func transformVersionToSegments(version string) ([]int, error) {
// Trim any trailing or leading segment separators (.) and split.
trimmedVersion := strings.Trim(version, segmentSeparator)
segments := strings.Split(trimmedVersion, segmentSeparator)
if len(segments) > maxPossibleSegments {
return nil, errTooManySegments
}
// Initialize with the maximum possible segment length for consistent comparison.
transformedVersion := make([]int, maxPossibleSegments)
for idx, segmentStr := range segments {
segmentInt, err := strconv.Atoi(segmentStr)
if err != nil {
return nil, err
}
if segmentInt < 0 {
return nil, errNegativeSegment
}
transformedVersion[idx] = segmentInt
}
return transformedVersion, nil
}
|