1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
// Copyright 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.bigtable.v1;
option java_multiple_files = true;
option java_outer_classname = "BigtableDataProto";
option java_package = "com.google.bigtable.v1";
// Specifies the complete (requested) contents of a single row of a table.
// Rows which exceed 256MiB in size cannot be read in full.
message Row {
// The unique key which identifies this row within its table. This is the same
// key that's used to identify the row in, for example, a MutateRowRequest.
// May contain any non-empty byte string up to 4KiB in length.
bytes key = 1;
// May be empty, but only if the entire row is empty.
// The mutual ordering of column families is not specified.
repeated Family families = 2;
}
// Specifies (some of) the contents of a single row/column family of a table.
message Family {
// The unique key which identifies this family within its row. This is the
// same key that's used to identify the family in, for example, a RowFilter
// which sets its "family_name_regex_filter" field.
// Must match [-_.a-zA-Z0-9]+, except that AggregatingRowProcessors may
// produce cells in a sentinel family with an empty name.
// Must be no greater than 64 characters in length.
string name = 1;
// Must not be empty. Sorted in order of increasing "qualifier".
repeated Column columns = 2;
}
// Specifies (some of) the contents of a single row/column of a table.
message Column {
// The unique key which identifies this column within its family. This is the
// same key that's used to identify the column in, for example, a RowFilter
// which sets its "column_qualifier_regex_filter" field.
// May contain any byte string, including the empty string, up to 16kiB in
// length.
bytes qualifier = 1;
// Must not be empty. Sorted in order of decreasing "timestamp_micros".
repeated Cell cells = 2;
}
// Specifies (some of) the contents of a single row/column/timestamp of a table.
message Cell {
// The cell's stored timestamp, which also uniquely identifies it within
// its column.
// Values are always expressed in microseconds, but individual tables may set
// a coarser "granularity" to further restrict the allowed values. For
// example, a table which specifies millisecond granularity will only allow
// values of "timestamp_micros" which are multiples of 1000.
int64 timestamp_micros = 1;
// The value stored in the cell.
// May contain any byte string, including the empty string, up to 100MiB in
// length.
bytes value = 2;
// Labels applied to the cell by a [RowFilter][google.bigtable.v1.RowFilter].
repeated string labels = 3;
}
// Specifies a contiguous range of rows.
message RowRange {
// Inclusive lower bound. If left empty, interpreted as the empty string.
bytes start_key = 2;
// Exclusive upper bound. If left empty, interpreted as infinity.
bytes end_key = 3;
}
// Specifies a non-contiguous set of rows.
message RowSet {
// Single rows included in the set.
repeated bytes row_keys = 1;
// Contiguous row ranges included in the set.
repeated RowRange row_ranges = 2;
}
// Specifies a contiguous range of columns within a single column family.
// The range spans from <column_family>:<start_qualifier> to
// <column_family>:<end_qualifier>, where both bounds can be either inclusive or
// exclusive.
message ColumnRange {
// The name of the column family within which this range falls.
string family_name = 1;
// The column qualifier at which to start the range (within 'column_family').
// If neither field is set, interpreted as the empty string, inclusive.
oneof start_qualifier {
// Used when giving an inclusive lower bound for the range.
bytes start_qualifier_inclusive = 2;
// Used when giving an exclusive lower bound for the range.
bytes start_qualifier_exclusive = 3;
}
// The column qualifier at which to end the range (within 'column_family').
// If neither field is set, interpreted as the infinite string, exclusive.
oneof end_qualifier {
// Used when giving an inclusive upper bound for the range.
bytes end_qualifier_inclusive = 4;
// Used when giving an exclusive upper bound for the range.
bytes end_qualifier_exclusive = 5;
}
}
// Specified a contiguous range of microsecond timestamps.
message TimestampRange {
// Inclusive lower bound. If left empty, interpreted as 0.
int64 start_timestamp_micros = 1;
// Exclusive upper bound. If left empty, interpreted as infinity.
int64 end_timestamp_micros = 2;
}
// Specifies a contiguous range of raw byte values.
message ValueRange {
// The value at which to start the range.
// If neither field is set, interpreted as the empty string, inclusive.
oneof start_value {
// Used when giving an inclusive lower bound for the range.
bytes start_value_inclusive = 1;
// Used when giving an exclusive lower bound for the range.
bytes start_value_exclusive = 2;
}
// The value at which to end the range.
// If neither field is set, interpreted as the infinite string, exclusive.
oneof end_value {
// Used when giving an inclusive upper bound for the range.
bytes end_value_inclusive = 3;
// Used when giving an exclusive upper bound for the range.
bytes end_value_exclusive = 4;
}
}
// Takes a row as input and produces an alternate view of the row based on
// specified rules. For example, a RowFilter might trim down a row to include
// just the cells from columns matching a given regular expression, or might
// return all the cells of a row but not their values. More complicated filters
// can be composed out of these components to express requests such as, "within
// every column of a particular family, give just the two most recent cells
// which are older than timestamp X."
//
// There are two broad categories of RowFilters (true filters and transformers),
// as well as two ways to compose simple filters into more complex ones
// (chains and interleaves). They work as follows:
//
// * True filters alter the input row by excluding some of its cells wholesale
// from the output row. An example of a true filter is the "value_regex_filter",
// which excludes cells whose values don't match the specified pattern. All
// regex true filters use RE2 syntax (https://github.com/google/re2/wiki/Syntax)
// in raw byte mode (RE2::Latin1), and are evaluated as full matches. An
// important point to keep in mind is that RE2(.) is equivalent by default to
// RE2([^\n]), meaning that it does not match newlines. When attempting to match
// an arbitrary byte, you should therefore use the escape sequence '\C', which
// may need to be further escaped as '\\C' in your client language.
//
// * Transformers alter the input row by changing the values of some of its
// cells in the output, without excluding them completely. Currently, the only
// supported transformer is the "strip_value_transformer", which replaces every
// cell's value with the empty string.
//
// * Chains and interleaves are described in more detail in the
// RowFilter.Chain and RowFilter.Interleave documentation.
//
// The total serialized size of a RowFilter message must not
// exceed 4096 bytes, and RowFilters may not be nested within each other
// (in Chains or Interleaves) to a depth of more than 20.
message RowFilter {
// A RowFilter which sends rows through several RowFilters in sequence.
message Chain {
// The elements of "filters" are chained together to process the input row:
// in row -> f(0) -> intermediate row -> f(1) -> ... -> f(N) -> out row
// The full chain is executed atomically.
repeated RowFilter filters = 1;
}
// A RowFilter which sends each row to each of several component
// RowFilters and interleaves the results.
message Interleave {
// The elements of "filters" all process a copy of the input row, and the
// results are pooled, sorted, and combined into a single output row.
// If multiple cells are produced with the same column and timestamp,
// they will all appear in the output row in an unspecified mutual order.
// Consider the following example, with three filters:
//
// input row
// |
// -----------------------------------------------------
// | | |
// f(0) f(1) f(2)
// | | |
// 1: foo,bar,10,x foo,bar,10,z far,bar,7,a
// 2: foo,blah,11,z far,blah,5,x far,blah,5,x
// | | |
// -----------------------------------------------------
// |
// 1: foo,bar,10,z // could have switched with #2
// 2: foo,bar,10,x // could have switched with #1
// 3: foo,blah,11,z
// 4: far,bar,7,a
// 5: far,blah,5,x // identical to #6
// 6: far,blah,5,x // identical to #5
// All interleaved filters are executed atomically.
repeated RowFilter filters = 1;
}
// A RowFilter which evaluates one of two possible RowFilters, depending on
// whether or not a predicate RowFilter outputs any cells from the input row.
//
// IMPORTANT NOTE: The predicate filter does not execute atomically with the
// true and false filters, which may lead to inconsistent or unexpected
// results. Additionally, Condition filters have poor performance, especially
// when filters are set for the false condition.
message Condition {
// If "predicate_filter" outputs any cells, then "true_filter" will be
// evaluated on the input row. Otherwise, "false_filter" will be evaluated.
RowFilter predicate_filter = 1;
// The filter to apply to the input row if "predicate_filter" returns any
// results. If not provided, no results will be returned in the true case.
RowFilter true_filter = 2;
// The filter to apply to the input row if "predicate_filter" does not
// return any results. If not provided, no results will be returned in the
// false case.
RowFilter false_filter = 3;
}
// Which of the possible RowFilter types to apply. If none are set, this
// RowFilter returns all cells in the input row.
oneof filter {
// Applies several RowFilters to the data in sequence, progressively
// narrowing the results.
Chain chain = 1;
// Applies several RowFilters to the data in parallel and combines the
// results.
Interleave interleave = 2;
// Applies one of two possible RowFilters to the data based on the output of
// a predicate RowFilter.
Condition condition = 3;
// ADVANCED USE ONLY.
// Hook for introspection into the RowFilter. Outputs all cells directly to
// the output of the read rather than to any parent filter. Consider the
// following example:
//
// Chain(
// FamilyRegex("A"),
// Interleave(
// All(),
// Chain(Label("foo"), Sink())
// ),
// QualifierRegex("B")
// )
//
// A,A,1,w
// A,B,2,x
// B,B,4,z
// |
// FamilyRegex("A")
// |
// A,A,1,w
// A,B,2,x
// |
// +------------+-------------+
// | |
// All() Label(foo)
// | |
// A,A,1,w A,A,1,w,labels:[foo]
// A,B,2,x A,B,2,x,labels:[foo]
// | |
// | Sink() --------------+
// | | |
// +------------+ x------+ A,A,1,w,labels:[foo]
// | A,B,2,x,labels:[foo]
// A,A,1,w |
// A,B,2,x |
// | |
// QualifierRegex("B") |
// | |
// A,B,2,x |
// | |
// +--------------------------------+
// |
// A,A,1,w,labels:[foo]
// A,B,2,x,labels:[foo] // could be switched
// A,B,2,x // could be switched
//
// Despite being excluded by the qualifier filter, a copy of every cell
// that reaches the sink is present in the final result.
//
// As with an [Interleave][google.bigtable.v1.RowFilter.Interleave],
// duplicate cells are possible, and appear in an unspecified mutual order.
// In this case we have a duplicate with column "A:B" and timestamp 2,
// because one copy passed through the all filter while the other was
// passed through the label and sink. Note that one copy has label "foo",
// while the other does not.
//
// Cannot be used within the `predicate_filter`, `true_filter`, or
// `false_filter` of a [Condition][google.bigtable.v1.RowFilter.Condition].
bool sink = 16;
// Matches all cells, regardless of input. Functionally equivalent to
// leaving `filter` unset, but included for completeness.
bool pass_all_filter = 17;
// Does not match any cells, regardless of input. Useful for temporarily
// disabling just part of a filter.
bool block_all_filter = 18;
// Matches only cells from rows whose keys satisfy the given RE2 regex. In
// other words, passes through the entire row when the key matches, and
// otherwise produces an empty row.
// Note that, since row keys can contain arbitrary bytes, the '\C' escape
// sequence must be used if a true wildcard is desired. The '.' character
// will not match the new line character '\n', which may be present in a
// binary key.
bytes row_key_regex_filter = 4;
// Matches all cells from a row with probability p, and matches no cells
// from the row with probability 1-p.
double row_sample_filter = 14;
// Matches only cells from columns whose families satisfy the given RE2
// regex. For technical reasons, the regex must not contain the ':'
// character, even if it is not being used as a literal.
// Note that, since column families cannot contain the new line character
// '\n', it is sufficient to use '.' as a full wildcard when matching
// column family names.
string family_name_regex_filter = 5;
// Matches only cells from columns whose qualifiers satisfy the given RE2
// regex.
// Note that, since column qualifiers can contain arbitrary bytes, the '\C'
// escape sequence must be used if a true wildcard is desired. The '.'
// character will not match the new line character '\n', which may be
// present in a binary qualifier.
bytes column_qualifier_regex_filter = 6;
// Matches only cells from columns within the given range.
ColumnRange column_range_filter = 7;
// Matches only cells with timestamps within the given range.
TimestampRange timestamp_range_filter = 8;
// Matches only cells with values that satisfy the given regular expression.
// Note that, since cell values can contain arbitrary bytes, the '\C' escape
// sequence must be used if a true wildcard is desired. The '.' character
// will not match the new line character '\n', which may be present in a
// binary value.
bytes value_regex_filter = 9;
// Matches only cells with values that fall within the given range.
ValueRange value_range_filter = 15;
// Skips the first N cells of each row, matching all subsequent cells.
// If duplicate cells are present, as is possible when using an Interleave,
// each copy of the cell is counted separately.
int32 cells_per_row_offset_filter = 10;
// Matches only the first N cells of each row.
// If duplicate cells are present, as is possible when using an Interleave,
// each copy of the cell is counted separately.
int32 cells_per_row_limit_filter = 11;
// Matches only the most recent N cells within each column. For example,
// if N=2, this filter would match column "foo:bar" at timestamps 10 and 9,
// skip all earlier cells in "foo:bar", and then begin matching again in
// column "foo:bar2".
// If duplicate cells are present, as is possible when using an Interleave,
// each copy of the cell is counted separately.
int32 cells_per_column_limit_filter = 12;
// Replaces each cell's value with the empty string.
bool strip_value_transformer = 13;
// Applies the given label to all cells in the output row. This allows
// the client to determine which results were produced from which part of
// the filter.
//
// Values must be at most 15 characters in length, and match the RE2
// pattern [a-z0-9\\-]+
//
// Due to a technical limitation, it is not currently possible to apply
// multiple labels to a cell. As a result, a Chain may have no more than
// one sub-filter which contains a apply_label_transformer. It is okay for
// an Interleave to contain multiple apply_label_transformers, as they will
// be applied to separate copies of the input. This may be relaxed in the
// future.
string apply_label_transformer = 19;
}
}
// Specifies a particular change to be made to the contents of a row.
message Mutation {
// A Mutation which sets the value of the specified cell.
message SetCell {
// The name of the family into which new data should be written.
// Must match [-_.a-zA-Z0-9]+
string family_name = 1;
// The qualifier of the column into which new data should be written.
// Can be any byte string, including the empty string.
bytes column_qualifier = 2;
// The timestamp of the cell into which new data should be written.
// Use -1 for current Bigtable server time.
// Otherwise, the client should set this value itself, noting that the
// default value is a timestamp of zero if the field is left unspecified.
// Values must match the "granularity" of the table (e.g. micros, millis).
int64 timestamp_micros = 3;
// The value to be written into the specified cell.
bytes value = 4;
}
// A Mutation which deletes cells from the specified column, optionally
// restricting the deletions to a given timestamp range.
message DeleteFromColumn {
// The name of the family from which cells should be deleted.
// Must match [-_.a-zA-Z0-9]+
string family_name = 1;
// The qualifier of the column from which cells should be deleted.
// Can be any byte string, including the empty string.
bytes column_qualifier = 2;
// The range of timestamps within which cells should be deleted.
TimestampRange time_range = 3;
}
// A Mutation which deletes all cells from the specified column family.
message DeleteFromFamily {
// The name of the family from which cells should be deleted.
// Must match [-_.a-zA-Z0-9]+
string family_name = 1;
}
// A Mutation which deletes all cells from the containing row.
message DeleteFromRow {
}
// Which of the possible Mutation types to apply.
oneof mutation {
// Set a cell's value.
SetCell set_cell = 1;
// Deletes cells from a column.
DeleteFromColumn delete_from_column = 2;
// Deletes cells from a column family.
DeleteFromFamily delete_from_family = 3;
// Deletes cells from the entire row.
DeleteFromRow delete_from_row = 4;
}
}
// Specifies an atomic read/modify/write operation on the latest value of the
// specified column.
message ReadModifyWriteRule {
// The name of the family to which the read/modify/write should be applied.
// Must match [-_.a-zA-Z0-9]+
string family_name = 1;
// The qualifier of the column to which the read/modify/write should be
// applied.
// Can be any byte string, including the empty string.
bytes column_qualifier = 2;
// The rule used to determine the column's new latest value from its current
// latest value.
oneof rule {
// Rule specifying that "append_value" be appended to the existing value.
// If the targeted cell is unset, it will be treated as containing the
// empty string.
bytes append_value = 3;
// Rule specifying that "increment_amount" be added to the existing value.
// If the targeted cell is unset, it will be treated as containing a zero.
// Otherwise, the targeted cell must contain an 8-byte value (interpreted
// as a 64-bit big-endian signed integer), or the entire request will fail.
int64 increment_amount = 4;
}
}
|