1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*
*
* Copyright 2018 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
// Package conn contains an implementation of a secure channel created by gRPC
// handshakers.
package conn
import (
"encoding/binary"
"fmt"
"math"
"net"
core "google.golang.org/grpc/credentials/alts/internal"
)
// ALTSRecordCrypto is the interface for gRPC ALTS record protocol.
type ALTSRecordCrypto interface {
// Encrypt encrypts the plaintext and computes the tag (if any) of dst
// and plaintext. dst and plaintext may fully overlap or not at all.
Encrypt(dst, plaintext []byte) ([]byte, error)
// EncryptionOverhead returns the tag size (if any) in bytes.
EncryptionOverhead() int
// Decrypt decrypts ciphertext and verify the tag (if any). dst and
// ciphertext may alias exactly or not at all. To reuse ciphertext's
// storage for the decrypted output, use ciphertext[:0] as dst.
Decrypt(dst, ciphertext []byte) ([]byte, error)
}
// ALTSRecordFunc is a function type for factory functions that create
// ALTSRecordCrypto instances.
type ALTSRecordFunc func(s core.Side, keyData []byte) (ALTSRecordCrypto, error)
const (
// MsgLenFieldSize is the byte size of the frame length field of a
// framed message.
MsgLenFieldSize = 4
// The byte size of the message type field of a framed message.
msgTypeFieldSize = 4
// The bytes size limit for a ALTS record message.
altsRecordLengthLimit = 1024 * 1024 // 1 MiB
// The default bytes size of a ALTS record message.
altsRecordDefaultLength = 4 * 1024 // 4KiB
// Message type value included in ALTS record framing.
altsRecordMsgType = uint32(0x06)
// The initial write buffer size.
altsWriteBufferInitialSize = 32 * 1024 // 32KiB
// The maximum write buffer size. This *must* be multiple of
// altsRecordDefaultLength.
altsWriteBufferMaxSize = 512 * 1024 // 512KiB
)
var (
protocols = make(map[string]ALTSRecordFunc)
)
// RegisterProtocol register a ALTS record encryption protocol.
func RegisterProtocol(protocol string, f ALTSRecordFunc) error {
if _, ok := protocols[protocol]; ok {
return fmt.Errorf("protocol %v is already registered", protocol)
}
protocols[protocol] = f
return nil
}
// conn represents a secured connection. It implements the net.Conn interface.
type conn struct {
net.Conn
crypto ALTSRecordCrypto
// buf holds data that has been read from the connection and decrypted,
// but has not yet been returned by Read.
buf []byte
payloadLengthLimit int
// protected holds data read from the network but have not yet been
// decrypted. This data might not compose a complete frame.
protected []byte
// writeBuf is a buffer used to contain encrypted frames before being
// written to the network.
writeBuf []byte
// nextFrame stores the next frame (in protected buffer) info.
nextFrame []byte
// overhead is the calculated overhead of each frame.
overhead int
}
// NewConn creates a new secure channel instance given the other party role and
// handshaking result.
func NewConn(c net.Conn, side core.Side, recordProtocol string, key []byte, protected []byte) (net.Conn, error) {
newCrypto := protocols[recordProtocol]
if newCrypto == nil {
return nil, fmt.Errorf("negotiated unknown next_protocol %q", recordProtocol)
}
crypto, err := newCrypto(side, key)
if err != nil {
return nil, fmt.Errorf("protocol %q: %v", recordProtocol, err)
}
overhead := MsgLenFieldSize + msgTypeFieldSize + crypto.EncryptionOverhead()
payloadLengthLimit := altsRecordDefaultLength - overhead
var protectedBuf []byte
if protected == nil {
// We pre-allocate protected to be of size
// 2*altsRecordDefaultLength-1 during initialization. We only
// read from the network into protected when protected does not
// contain a complete frame, which is at most
// altsRecordDefaultLength-1 (bytes). And we read at most
// altsRecordDefaultLength (bytes) data into protected at one
// time. Therefore, 2*altsRecordDefaultLength-1 is large enough
// to buffer data read from the network.
protectedBuf = make([]byte, 0, 2*altsRecordDefaultLength-1)
} else {
protectedBuf = make([]byte, len(protected))
copy(protectedBuf, protected)
}
altsConn := &conn{
Conn: c,
crypto: crypto,
payloadLengthLimit: payloadLengthLimit,
protected: protectedBuf,
writeBuf: make([]byte, altsWriteBufferInitialSize),
nextFrame: protectedBuf,
overhead: overhead,
}
return altsConn, nil
}
// Read reads and decrypts a frame from the underlying connection, and copies the
// decrypted payload into b. If the size of the payload is greater than len(b),
// Read retains the remaining bytes in an internal buffer, and subsequent calls
// to Read will read from this buffer until it is exhausted.
func (p *conn) Read(b []byte) (n int, err error) {
if len(p.buf) == 0 {
var framedMsg []byte
framedMsg, p.nextFrame, err = ParseFramedMsg(p.nextFrame, altsRecordLengthLimit)
if err != nil {
return n, err
}
// Check whether the next frame to be decrypted has been
// completely received yet.
if len(framedMsg) == 0 {
copy(p.protected, p.nextFrame)
p.protected = p.protected[:len(p.nextFrame)]
// Always copy next incomplete frame to the beginning of
// the protected buffer and reset nextFrame to it.
p.nextFrame = p.protected
}
// Check whether a complete frame has been received yet.
for len(framedMsg) == 0 {
if len(p.protected) == cap(p.protected) {
tmp := make([]byte, len(p.protected), cap(p.protected)+altsRecordDefaultLength)
copy(tmp, p.protected)
p.protected = tmp
}
n, err = p.Conn.Read(p.protected[len(p.protected):min(cap(p.protected), len(p.protected)+altsRecordDefaultLength)])
if err != nil {
return 0, err
}
p.protected = p.protected[:len(p.protected)+n]
framedMsg, p.nextFrame, err = ParseFramedMsg(p.protected, altsRecordLengthLimit)
if err != nil {
return 0, err
}
}
// Now we have a complete frame, decrypted it.
msg := framedMsg[MsgLenFieldSize:]
msgType := binary.LittleEndian.Uint32(msg[:msgTypeFieldSize])
if msgType&0xff != altsRecordMsgType {
return 0, fmt.Errorf("received frame with incorrect message type %v, expected lower byte %v",
msgType, altsRecordMsgType)
}
ciphertext := msg[msgTypeFieldSize:]
// Decrypt requires that if the dst and ciphertext alias, they
// must alias exactly. Code here used to use msg[:0], but msg
// starts MsgLenFieldSize+msgTypeFieldSize bytes earlier than
// ciphertext, so they alias inexactly. Using ciphertext[:0]
// arranges the appropriate aliasing without needing to copy
// ciphertext or use a separate destination buffer. For more info
// check: https://golang.org/pkg/crypto/cipher/#AEAD.
p.buf, err = p.crypto.Decrypt(ciphertext[:0], ciphertext)
if err != nil {
return 0, err
}
}
n = copy(b, p.buf)
p.buf = p.buf[n:]
return n, nil
}
// Write encrypts, frames, and writes bytes from b to the underlying connection.
func (p *conn) Write(b []byte) (n int, err error) {
n = len(b)
// Calculate the output buffer size with framing and encryption overhead.
numOfFrames := int(math.Ceil(float64(len(b)) / float64(p.payloadLengthLimit)))
size := len(b) + numOfFrames*p.overhead
// If writeBuf is too small, increase its size up to the maximum size.
partialBSize := len(b)
if size > altsWriteBufferMaxSize {
size = altsWriteBufferMaxSize
const numOfFramesInMaxWriteBuf = altsWriteBufferMaxSize / altsRecordDefaultLength
partialBSize = numOfFramesInMaxWriteBuf * p.payloadLengthLimit
}
if len(p.writeBuf) < size {
p.writeBuf = make([]byte, size)
}
for partialBStart := 0; partialBStart < len(b); partialBStart += partialBSize {
partialBEnd := partialBStart + partialBSize
if partialBEnd > len(b) {
partialBEnd = len(b)
}
partialB := b[partialBStart:partialBEnd]
writeBufIndex := 0
for len(partialB) > 0 {
payloadLen := len(partialB)
if payloadLen > p.payloadLengthLimit {
payloadLen = p.payloadLengthLimit
}
buf := partialB[:payloadLen]
partialB = partialB[payloadLen:]
// Write buffer contains: length, type, payload, and tag
// if any.
// 1. Fill in type field.
msg := p.writeBuf[writeBufIndex+MsgLenFieldSize:]
binary.LittleEndian.PutUint32(msg, altsRecordMsgType)
// 2. Encrypt the payload and create a tag if any.
msg, err = p.crypto.Encrypt(msg[:msgTypeFieldSize], buf)
if err != nil {
return n, err
}
// 3. Fill in the size field.
binary.LittleEndian.PutUint32(p.writeBuf[writeBufIndex:], uint32(len(msg)))
// 4. Increase writeBufIndex.
writeBufIndex += len(buf) + p.overhead
}
nn, err := p.Conn.Write(p.writeBuf[:writeBufIndex])
if err != nil {
// We need to calculate the actual data size that was
// written. This means we need to remove header,
// encryption overheads, and any partially-written
// frame data.
numOfWrittenFrames := int(math.Floor(float64(nn) / float64(altsRecordDefaultLength)))
return partialBStart + numOfWrittenFrames*p.payloadLengthLimit, err
}
}
return n, nil
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
|