1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package protocmp
import (
"bytes"
"fmt"
"math"
"reflect"
"strings"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"google.golang.org/protobuf/proto"
"google.golang.org/protobuf/reflect/protoreflect"
)
var (
enumReflectType = reflect.TypeOf(Enum{})
messageReflectType = reflect.TypeOf(Message{})
)
// FilterEnum filters opt to only be applicable on standalone Enums,
// singular fields of enums, list fields of enums, or map fields of enum values,
// where the enum is the same type as the specified enum.
//
// The Go type of the last path step may be an:
// • Enum for singular fields, elements of a repeated field,
// values of a map field, or standalone Enums
// • []Enum for list fields
// • map[K]Enum for map fields
// • interface{} for a Message map entry value
//
// This must be used in conjunction with Transform.
func FilterEnum(enum protoreflect.Enum, opt cmp.Option) cmp.Option {
return FilterDescriptor(enum.Descriptor(), opt)
}
// FilterMessage filters opt to only be applicable on standalone Messages,
// singular fields of messages, list fields of messages, or map fields of
// message values, where the message is the same type as the specified message.
//
// The Go type of the last path step may be an:
// • Message for singular fields, elements of a repeated field,
// values of a map field, or standalone Messages
// • []Message for list fields
// • map[K]Message for map fields
// • interface{} for a Message map entry value
//
// This must be used in conjunction with Transform.
func FilterMessage(message proto.Message, opt cmp.Option) cmp.Option {
return FilterDescriptor(message.ProtoReflect().Descriptor(), opt)
}
// FilterField filters opt to only be applicable on the specified field
// in the message. It panics if a field of the given name does not exist.
//
// The Go type of the last path step may be an:
// • T for singular fields
// • []T for list fields
// • map[K]T for map fields
// • interface{} for a Message map entry value
//
// This must be used in conjunction with Transform.
func FilterField(message proto.Message, name protoreflect.Name, opt cmp.Option) cmp.Option {
md := message.ProtoReflect().Descriptor()
return FilterDescriptor(mustFindFieldDescriptor(md, name), opt)
}
// FilterOneof filters opt to only be applicable on all fields within the
// specified oneof in the message. It panics if a oneof of the given name
// does not exist.
//
// The Go type of the last path step may be an:
// • T for singular fields
// • []T for list fields
// • map[K]T for map fields
// • interface{} for a Message map entry value
//
// This must be used in conjunction with Transform.
func FilterOneof(message proto.Message, name protoreflect.Name, opt cmp.Option) cmp.Option {
md := message.ProtoReflect().Descriptor()
return FilterDescriptor(mustFindOneofDescriptor(md, name), opt)
}
// FilterDescriptor ignores the specified descriptor.
//
// The following descriptor types may be specified:
// • protoreflect.EnumDescriptor
// • protoreflect.MessageDescriptor
// • protoreflect.FieldDescriptor
// • protoreflect.OneofDescriptor
//
// For the behavior of each, see the corresponding filter function.
// Since this filter accepts a protoreflect.FieldDescriptor, it can be used
// to also filter for extension fields as a protoreflect.ExtensionDescriptor
// is just an alias to protoreflect.FieldDescriptor.
//
// This must be used in conjunction with Transform.
func FilterDescriptor(desc protoreflect.Descriptor, opt cmp.Option) cmp.Option {
f := newNameFilters(desc)
return cmp.FilterPath(f.Filter, opt)
}
// IgnoreEnums ignores all enums of the specified types.
// It is equivalent to FilterEnum(enum, cmp.Ignore()) for each enum.
//
// This must be used in conjunction with Transform.
func IgnoreEnums(enums ...protoreflect.Enum) cmp.Option {
var ds []protoreflect.Descriptor
for _, e := range enums {
ds = append(ds, e.Descriptor())
}
return IgnoreDescriptors(ds...)
}
// IgnoreMessages ignores all messages of the specified types.
// It is equivalent to FilterMessage(message, cmp.Ignore()) for each message.
//
// This must be used in conjunction with Transform.
func IgnoreMessages(messages ...proto.Message) cmp.Option {
var ds []protoreflect.Descriptor
for _, m := range messages {
ds = append(ds, m.ProtoReflect().Descriptor())
}
return IgnoreDescriptors(ds...)
}
// IgnoreFields ignores the specified fields in the specified message.
// It is equivalent to FilterField(message, name, cmp.Ignore()) for each field
// in the message.
//
// This must be used in conjunction with Transform.
func IgnoreFields(message proto.Message, names ...protoreflect.Name) cmp.Option {
var ds []protoreflect.Descriptor
md := message.ProtoReflect().Descriptor()
for _, s := range names {
ds = append(ds, mustFindFieldDescriptor(md, s))
}
return IgnoreDescriptors(ds...)
}
// IgnoreOneofs ignores fields of the specified oneofs in the specified message.
// It is equivalent to FilterOneof(message, name, cmp.Ignore()) for each oneof
// in the message.
//
// This must be used in conjunction with Transform.
func IgnoreOneofs(message proto.Message, names ...protoreflect.Name) cmp.Option {
var ds []protoreflect.Descriptor
md := message.ProtoReflect().Descriptor()
for _, s := range names {
ds = append(ds, mustFindOneofDescriptor(md, s))
}
return IgnoreDescriptors(ds...)
}
// IgnoreDescriptors ignores the specified set of descriptors.
// It is equivalent to FilterDescriptor(desc, cmp.Ignore()) for each descriptor.
//
// This must be used in conjunction with Transform.
func IgnoreDescriptors(descs ...protoreflect.Descriptor) cmp.Option {
return cmp.FilterPath(newNameFilters(descs...).Filter, cmp.Ignore())
}
func mustFindFieldDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.FieldDescriptor {
d := findDescriptor(md, s)
if fd, ok := d.(protoreflect.FieldDescriptor); ok && fd.TextName() == string(s) {
return fd
}
var suggestion string
switch d := d.(type) {
case protoreflect.FieldDescriptor:
suggestion = fmt.Sprintf("; consider specifying field %q instead", d.TextName())
case protoreflect.OneofDescriptor:
suggestion = fmt.Sprintf("; consider specifying oneof %q with IgnoreOneofs instead", d.Name())
}
panic(fmt.Sprintf("message %q has no field %q%s", md.FullName(), s, suggestion))
}
func mustFindOneofDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.OneofDescriptor {
d := findDescriptor(md, s)
if od, ok := d.(protoreflect.OneofDescriptor); ok && d.Name() == s {
return od
}
var suggestion string
switch d := d.(type) {
case protoreflect.OneofDescriptor:
suggestion = fmt.Sprintf("; consider specifying oneof %q instead", d.Name())
case protoreflect.FieldDescriptor:
suggestion = fmt.Sprintf("; consider specifying field %q with IgnoreFields instead", d.TextName())
}
panic(fmt.Sprintf("message %q has no oneof %q%s", md.FullName(), s, suggestion))
}
func findDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.Descriptor {
// Exact match.
if fd := md.Fields().ByTextName(string(s)); fd != nil {
return fd
}
if od := md.Oneofs().ByName(s); od != nil && !od.IsSynthetic() {
return od
}
// Best-effort match.
//
// It's a common user mistake to use the CamelCased field name as it appears
// in the generated Go struct. Instead of complaining that it doesn't exist,
// suggest the real protobuf name that the user may have desired.
normalize := func(s protoreflect.Name) string {
return strings.Replace(strings.ToLower(string(s)), "_", "", -1)
}
for i := 0; i < md.Fields().Len(); i++ {
if fd := md.Fields().Get(i); normalize(fd.Name()) == normalize(s) {
return fd
}
}
for i := 0; i < md.Oneofs().Len(); i++ {
if od := md.Oneofs().Get(i); normalize(od.Name()) == normalize(s) {
return od
}
}
return nil
}
type nameFilters struct {
names map[protoreflect.FullName]bool
}
func newNameFilters(descs ...protoreflect.Descriptor) *nameFilters {
f := &nameFilters{names: make(map[protoreflect.FullName]bool)}
for _, d := range descs {
switch d := d.(type) {
case protoreflect.EnumDescriptor:
f.names[d.FullName()] = true
case protoreflect.MessageDescriptor:
f.names[d.FullName()] = true
case protoreflect.FieldDescriptor:
f.names[d.FullName()] = true
case protoreflect.OneofDescriptor:
for i := 0; i < d.Fields().Len(); i++ {
f.names[d.Fields().Get(i).FullName()] = true
}
default:
panic("invalid descriptor type")
}
}
return f
}
func (f *nameFilters) Filter(p cmp.Path) bool {
vx, vy := p.Last().Values()
return (f.filterValue(vx) && f.filterValue(vy)) || f.filterFields(p)
}
func (f *nameFilters) filterFields(p cmp.Path) bool {
// Trim off trailing type-assertions so that the filter can match on the
// concrete value held within an interface value.
if _, ok := p.Last().(cmp.TypeAssertion); ok {
p = p[:len(p)-1]
}
// Filter for Message maps.
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
ps := p.Index(-2)
if ps.Type() != messageReflectType {
return false
}
// Check field name.
vx, vy := ps.Values()
mx := vx.Interface().(Message)
my := vy.Interface().(Message)
k := mi.Key().String()
if f.filterFieldName(mx, k) && f.filterFieldName(my, k) {
return true
}
// Check field value.
vx, vy = mi.Values()
if f.filterFieldValue(vx) && f.filterFieldValue(vy) {
return true
}
return false
}
func (f *nameFilters) filterFieldName(m Message, k string) bool {
if _, ok := m[k]; !ok {
return true // treat missing fields as already filtered
}
var fd protoreflect.FieldDescriptor
switch mt := m[messageTypeKey].(messageType); {
case protoreflect.Name(k).IsValid():
fd = mt.md.Fields().ByTextName(k)
default:
fd = mt.xds[k]
}
if fd != nil {
return f.names[fd.FullName()]
}
return false
}
func (f *nameFilters) filterFieldValue(v reflect.Value) bool {
if !v.IsValid() {
return true // implies missing slice element or map entry
}
v = v.Elem() // map entries are always populated values
switch t := v.Type(); {
case t == enumReflectType || t == messageReflectType:
// Check for singular message or enum field.
return f.filterValue(v)
case t.Kind() == reflect.Slice && (t.Elem() == enumReflectType || t.Elem() == messageReflectType):
// Check for list field of enum or message type.
return f.filterValue(v.Index(0))
case t.Kind() == reflect.Map && (t.Elem() == enumReflectType || t.Elem() == messageReflectType):
// Check for map field of enum or message type.
return f.filterValue(v.MapIndex(v.MapKeys()[0]))
}
return false
}
func (f *nameFilters) filterValue(v reflect.Value) bool {
if !v.IsValid() {
return true // implies missing slice element or map entry
}
if !v.CanInterface() {
return false // implies unexported struct field
}
switch v := v.Interface().(type) {
case Enum:
return v.Descriptor() != nil && f.names[v.Descriptor().FullName()]
case Message:
return v.Descriptor() != nil && f.names[v.Descriptor().FullName()]
}
return false
}
// IgnoreDefaultScalars ignores singular scalars that are unpopulated or
// explicitly set to the default value.
// This option does not effect elements in a list or entries in a map.
//
// This must be used in conjunction with Transform.
func IgnoreDefaultScalars() cmp.Option {
return cmp.FilterPath(func(p cmp.Path) bool {
// Filter for Message maps.
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
ps := p.Index(-2)
if ps.Type() != messageReflectType {
return false
}
// Check whether both fields are default or unpopulated scalars.
vx, vy := ps.Values()
mx := vx.Interface().(Message)
my := vy.Interface().(Message)
k := mi.Key().String()
return isDefaultScalar(mx, k) && isDefaultScalar(my, k)
}, cmp.Ignore())
}
func isDefaultScalar(m Message, k string) bool {
if _, ok := m[k]; !ok {
return true
}
var fd protoreflect.FieldDescriptor
switch mt := m[messageTypeKey].(messageType); {
case protoreflect.Name(k).IsValid():
fd = mt.md.Fields().ByTextName(k)
default:
fd = mt.xds[k]
}
if fd == nil || !fd.Default().IsValid() {
return false
}
switch fd.Kind() {
case protoreflect.BytesKind:
v, ok := m[k].([]byte)
return ok && bytes.Equal(fd.Default().Bytes(), v)
case protoreflect.FloatKind:
v, ok := m[k].(float32)
return ok && equalFloat64(fd.Default().Float(), float64(v))
case protoreflect.DoubleKind:
v, ok := m[k].(float64)
return ok && equalFloat64(fd.Default().Float(), float64(v))
case protoreflect.EnumKind:
v, ok := m[k].(Enum)
return ok && fd.Default().Enum() == v.Number()
default:
return reflect.DeepEqual(fd.Default().Interface(), m[k])
}
}
func equalFloat64(x, y float64) bool {
return x == y || (math.IsNaN(x) && math.IsNaN(y))
}
// IgnoreEmptyMessages ignores messages that are empty or unpopulated.
// It applies to standalone Messages, singular message fields,
// list fields of messages, and map fields of message values.
//
// This must be used in conjunction with Transform.
func IgnoreEmptyMessages() cmp.Option {
return cmp.FilterPath(func(p cmp.Path) bool {
vx, vy := p.Last().Values()
return (isEmptyMessage(vx) && isEmptyMessage(vy)) || isEmptyMessageFields(p)
}, cmp.Ignore())
}
func isEmptyMessageFields(p cmp.Path) bool {
// Filter for Message maps.
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
ps := p.Index(-2)
if ps.Type() != messageReflectType {
return false
}
// Check field value.
vx, vy := mi.Values()
if isEmptyMessageFieldValue(vx) && isEmptyMessageFieldValue(vy) {
return true
}
return false
}
func isEmptyMessageFieldValue(v reflect.Value) bool {
if !v.IsValid() {
return true // implies missing slice element or map entry
}
v = v.Elem() // map entries are always populated values
switch t := v.Type(); {
case t == messageReflectType:
// Check singular field for empty message.
if !isEmptyMessage(v) {
return false
}
case t.Kind() == reflect.Slice && t.Elem() == messageReflectType:
// Check list field for all empty message elements.
for i := 0; i < v.Len(); i++ {
if !isEmptyMessage(v.Index(i)) {
return false
}
}
case t.Kind() == reflect.Map && t.Elem() == messageReflectType:
// Check map field for all empty message values.
for _, k := range v.MapKeys() {
if !isEmptyMessage(v.MapIndex(k)) {
return false
}
}
default:
return false
}
return true
}
func isEmptyMessage(v reflect.Value) bool {
if !v.IsValid() {
return true // implies missing slice element or map entry
}
if !v.CanInterface() {
return false // implies unexported struct field
}
if m, ok := v.Interface().(Message); ok {
for k := range m {
if k != messageTypeKey && k != messageInvalidKey {
return false
}
}
return true
}
return false
}
// IgnoreUnknown ignores unknown fields in all messages.
//
// This must be used in conjunction with Transform.
func IgnoreUnknown() cmp.Option {
return cmp.FilterPath(func(p cmp.Path) bool {
// Filter for Message maps.
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
ps := p.Index(-2)
if ps.Type() != messageReflectType {
return false
}
// Filter for unknown fields (which always have a numeric map key).
return strings.Trim(mi.Key().String(), "0123456789") == ""
}, cmp.Ignore())
}
// SortRepeated sorts repeated fields of the specified element type.
// The less function must be of the form "func(T, T) bool" where T is the
// Go element type for the repeated field kind.
//
// The element type T can be one of the following:
// • Go type for a protobuf scalar kind except for an enum
// (i.e., bool, int32, int64, uint32, uint64, float32, float64, string, and []byte)
// • E where E is a concrete enum type that implements protoreflect.Enum
// • M where M is a concrete message type that implement proto.Message
//
// This option only applies to repeated fields within a protobuf message.
// It does not operate on higher-order Go types that seem like a repeated field.
// For example, a []T outside the context of a protobuf message will not be
// handled by this option. To sort Go slices that are not repeated fields,
// consider using "github.com/google/go-cmp/cmp/cmpopts".SortSlices instead.
//
// This must be used in conjunction with Transform.
func SortRepeated(lessFunc interface{}) cmp.Option {
t, ok := checkTTBFunc(lessFunc)
if !ok {
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
var opt cmp.Option
var sliceType reflect.Type
switch vf := reflect.ValueOf(lessFunc); {
case t.Implements(enumV2Type):
et := reflect.Zero(t).Interface().(protoreflect.Enum).Type()
lessFunc = func(x, y Enum) bool {
vx := reflect.ValueOf(et.New(x.Number()))
vy := reflect.ValueOf(et.New(y.Number()))
return vf.Call([]reflect.Value{vx, vy})[0].Bool()
}
opt = FilterDescriptor(et.Descriptor(), cmpopts.SortSlices(lessFunc))
sliceType = reflect.SliceOf(enumReflectType)
case t.Implements(messageV2Type):
mt := reflect.Zero(t).Interface().(protoreflect.ProtoMessage).ProtoReflect().Type()
lessFunc = func(x, y Message) bool {
mx := mt.New().Interface()
my := mt.New().Interface()
proto.Merge(mx, x)
proto.Merge(my, y)
vx := reflect.ValueOf(mx)
vy := reflect.ValueOf(my)
return vf.Call([]reflect.Value{vx, vy})[0].Bool()
}
opt = FilterDescriptor(mt.Descriptor(), cmpopts.SortSlices(lessFunc))
sliceType = reflect.SliceOf(messageReflectType)
default:
switch t {
case reflect.TypeOf(bool(false)):
case reflect.TypeOf(int32(0)):
case reflect.TypeOf(int64(0)):
case reflect.TypeOf(uint32(0)):
case reflect.TypeOf(uint64(0)):
case reflect.TypeOf(float32(0)):
case reflect.TypeOf(float64(0)):
case reflect.TypeOf(string("")):
case reflect.TypeOf([]byte(nil)):
default:
panic(fmt.Sprintf("invalid element type: %v", t))
}
opt = cmpopts.SortSlices(lessFunc)
sliceType = reflect.SliceOf(t)
}
return cmp.FilterPath(func(p cmp.Path) bool {
// Filter to only apply to repeated fields within a message.
if t := p.Index(-1).Type(); t == nil || t != sliceType {
return false
}
if t := p.Index(-2).Type(); t == nil || t.Kind() != reflect.Interface {
return false
}
if t := p.Index(-3).Type(); t == nil || t != messageReflectType {
return false
}
return true
}, opt)
}
func checkTTBFunc(lessFunc interface{}) (reflect.Type, bool) {
switch t := reflect.TypeOf(lessFunc); {
case t == nil:
return nil, false
case t.NumIn() != 2 || t.In(0) != t.In(1) || t.IsVariadic():
return nil, false
case t.NumOut() != 1 || t.Out(0) != reflect.TypeOf(false):
return nil, false
default:
return t.In(0), true
}
}
// SortRepeatedFields sorts the specified repeated fields.
// Sorting a repeated field is useful for treating the list as a multiset
// (i.e., a set where each value can appear multiple times).
// It panics if the field does not exist or is not a repeated field.
//
// The sort ordering is as follows:
// • Booleans are sorted where false is sorted before true.
// • Integers are sorted in ascending order.
// • Floating-point numbers are sorted in ascending order according to
// the total ordering defined by IEEE-754 (section 5.10).
// • Strings and bytes are sorted lexicographically in ascending order.
// • Enums are sorted in ascending order based on its numeric value.
// • Messages are sorted according to some arbitrary ordering
// which is undefined and may change in future implementations.
//
// The ordering chosen for repeated messages is unlikely to be aesthetically
// preferred by humans. Consider using a custom sort function:
//
// FilterField(m, "foo_field", SortRepeated(func(x, y *foopb.MyMessage) bool {
// ... // user-provided definition for less
// }))
//
// This must be used in conjunction with Transform.
func SortRepeatedFields(message proto.Message, names ...protoreflect.Name) cmp.Option {
var opts cmp.Options
md := message.ProtoReflect().Descriptor()
for _, name := range names {
fd := mustFindFieldDescriptor(md, name)
if !fd.IsList() {
panic(fmt.Sprintf("message field %q is not repeated", fd.FullName()))
}
var lessFunc interface{}
switch fd.Kind() {
case protoreflect.BoolKind:
lessFunc = func(x, y bool) bool { return !x && y }
case protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Sfixed32Kind:
lessFunc = func(x, y int32) bool { return x < y }
case protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Sfixed64Kind:
lessFunc = func(x, y int64) bool { return x < y }
case protoreflect.Uint32Kind, protoreflect.Fixed32Kind:
lessFunc = func(x, y uint32) bool { return x < y }
case protoreflect.Uint64Kind, protoreflect.Fixed64Kind:
lessFunc = func(x, y uint64) bool { return x < y }
case protoreflect.FloatKind:
lessFunc = lessF32
case protoreflect.DoubleKind:
lessFunc = lessF64
case protoreflect.StringKind:
lessFunc = func(x, y string) bool { return x < y }
case protoreflect.BytesKind:
lessFunc = func(x, y []byte) bool { return bytes.Compare(x, y) < 0 }
case protoreflect.EnumKind:
lessFunc = func(x, y Enum) bool { return x.Number() < y.Number() }
case protoreflect.MessageKind, protoreflect.GroupKind:
lessFunc = func(x, y Message) bool { return x.String() < y.String() }
default:
panic(fmt.Sprintf("invalid kind: %v", fd.Kind()))
}
opts = append(opts, FilterDescriptor(fd, cmpopts.SortSlices(lessFunc)))
}
return opts
}
func lessF32(x, y float32) bool {
// Bit-wise implementation of IEEE-754, section 5.10.
xi := int32(math.Float32bits(x))
yi := int32(math.Float32bits(y))
xi ^= int32(uint32(xi>>31) >> 1)
yi ^= int32(uint32(yi>>31) >> 1)
return xi < yi
}
func lessF64(x, y float64) bool {
// Bit-wise implementation of IEEE-754, section 5.10.
xi := int64(math.Float64bits(x))
yi := int64(math.Float64bits(y))
xi ^= int64(uint64(xi>>63) >> 1)
yi ^= int64(uint64(yi>>63) >> 1)
return xi < yi
}
|