1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package dynamicpb creates protocol buffer messages using runtime type information.
package dynamicpb
import (
"math"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/runtime/protoiface"
"google.golang.org/protobuf/runtime/protoimpl"
)
// enum is a dynamic protoreflect.Enum.
type enum struct {
num protoreflect.EnumNumber
typ protoreflect.EnumType
}
func (e enum) Descriptor() protoreflect.EnumDescriptor { return e.typ.Descriptor() }
func (e enum) Type() protoreflect.EnumType { return e.typ }
func (e enum) Number() protoreflect.EnumNumber { return e.num }
// enumType is a dynamic protoreflect.EnumType.
type enumType struct {
desc protoreflect.EnumDescriptor
}
// NewEnumType creates a new EnumType with the provided descriptor.
//
// EnumTypes created by this package are equal if their descriptors are equal.
// That is, if ed1 == ed2, then NewEnumType(ed1) == NewEnumType(ed2).
//
// Enum values created by the EnumType are equal if their numbers are equal.
func NewEnumType(desc protoreflect.EnumDescriptor) protoreflect.EnumType {
return enumType{desc}
}
func (et enumType) New(n protoreflect.EnumNumber) protoreflect.Enum { return enum{n, et} }
func (et enumType) Descriptor() protoreflect.EnumDescriptor { return et.desc }
// extensionType is a dynamic protoreflect.ExtensionType.
type extensionType struct {
desc extensionTypeDescriptor
}
// A Message is a dynamically constructed protocol buffer message.
//
// Message implements the [google.golang.org/protobuf/proto.Message] interface,
// and may be used with all standard proto package functions
// such as Marshal, Unmarshal, and so forth.
//
// Message also implements the [protoreflect.Message] interface.
// See the [protoreflect] package documentation for that interface for how to
// get and set fields and otherwise interact with the contents of a Message.
//
// Reflection API functions which construct messages, such as NewField,
// return new dynamic messages of the appropriate type. Functions which take
// messages, such as Set for a message-value field, will accept any message
// with a compatible type.
//
// Operations which modify a Message are not safe for concurrent use.
type Message struct {
typ messageType
known map[protoreflect.FieldNumber]protoreflect.Value
ext map[protoreflect.FieldNumber]protoreflect.FieldDescriptor
unknown protoreflect.RawFields
}
var (
_ protoreflect.Message = (*Message)(nil)
_ protoreflect.ProtoMessage = (*Message)(nil)
_ protoiface.MessageV1 = (*Message)(nil)
)
// NewMessage creates a new message with the provided descriptor.
func NewMessage(desc protoreflect.MessageDescriptor) *Message {
return &Message{
typ: messageType{desc},
known: make(map[protoreflect.FieldNumber]protoreflect.Value),
ext: make(map[protoreflect.FieldNumber]protoreflect.FieldDescriptor),
}
}
// ProtoMessage implements the legacy message interface.
func (m *Message) ProtoMessage() {}
// ProtoReflect implements the [protoreflect.ProtoMessage] interface.
func (m *Message) ProtoReflect() protoreflect.Message {
return m
}
// String returns a string representation of a message.
func (m *Message) String() string {
return protoimpl.X.MessageStringOf(m)
}
// Reset clears the message to be empty, but preserves the dynamic message type.
func (m *Message) Reset() {
m.known = make(map[protoreflect.FieldNumber]protoreflect.Value)
m.ext = make(map[protoreflect.FieldNumber]protoreflect.FieldDescriptor)
m.unknown = nil
}
// Descriptor returns the message descriptor.
func (m *Message) Descriptor() protoreflect.MessageDescriptor {
return m.typ.desc
}
// Type returns the message type.
func (m *Message) Type() protoreflect.MessageType {
return m.typ
}
// New returns a newly allocated empty message with the same descriptor.
// See [protoreflect.Message] for details.
func (m *Message) New() protoreflect.Message {
return m.Type().New()
}
// Interface returns the message.
// See [protoreflect.Message] for details.
func (m *Message) Interface() protoreflect.ProtoMessage {
return m
}
// ProtoMethods is an internal detail of the [protoreflect.Message] interface.
// Users should never call this directly.
func (m *Message) ProtoMethods() *protoiface.Methods {
return nil
}
// Range visits every populated field in undefined order.
// See [protoreflect.Message] for details.
func (m *Message) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) {
for num, v := range m.known {
fd := m.ext[num]
if fd == nil {
fd = m.Descriptor().Fields().ByNumber(num)
}
if !isSet(fd, v) {
continue
}
if !f(fd, v) {
return
}
}
}
// Has reports whether a field is populated.
// See [protoreflect.Message] for details.
func (m *Message) Has(fd protoreflect.FieldDescriptor) bool {
m.checkField(fd)
if fd.IsExtension() && m.ext[fd.Number()] != fd {
return false
}
v, ok := m.known[fd.Number()]
if !ok {
return false
}
return isSet(fd, v)
}
// Clear clears a field.
// See [protoreflect.Message] for details.
func (m *Message) Clear(fd protoreflect.FieldDescriptor) {
m.checkField(fd)
num := fd.Number()
delete(m.known, num)
delete(m.ext, num)
}
// Get returns the value of a field.
// See [protoreflect.Message] for details.
func (m *Message) Get(fd protoreflect.FieldDescriptor) protoreflect.Value {
m.checkField(fd)
num := fd.Number()
if fd.IsExtension() {
if fd != m.ext[num] {
return fd.(protoreflect.ExtensionTypeDescriptor).Type().Zero()
}
return m.known[num]
}
if v, ok := m.known[num]; ok {
switch {
case fd.IsMap():
if v.Map().Len() > 0 {
return v
}
case fd.IsList():
if v.List().Len() > 0 {
return v
}
default:
return v
}
}
switch {
case fd.IsMap():
return protoreflect.ValueOfMap(&dynamicMap{desc: fd})
case fd.IsList():
return protoreflect.ValueOfList(emptyList{desc: fd})
case fd.Message() != nil:
return protoreflect.ValueOfMessage(&Message{typ: messageType{fd.Message()}})
case fd.Kind() == protoreflect.BytesKind:
return protoreflect.ValueOfBytes(append([]byte(nil), fd.Default().Bytes()...))
default:
return fd.Default()
}
}
// Mutable returns a mutable reference to a repeated, map, or message field.
// See [protoreflect.Message] for details.
func (m *Message) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value {
m.checkField(fd)
if !fd.IsMap() && !fd.IsList() && fd.Message() == nil {
panic(errors.New("%v: getting mutable reference to non-composite type", fd.FullName()))
}
if m.known == nil {
panic(errors.New("%v: modification of read-only message", fd.FullName()))
}
num := fd.Number()
if fd.IsExtension() {
if fd != m.ext[num] {
m.ext[num] = fd
m.known[num] = fd.(protoreflect.ExtensionTypeDescriptor).Type().New()
}
return m.known[num]
}
if v, ok := m.known[num]; ok {
return v
}
m.clearOtherOneofFields(fd)
m.known[num] = m.NewField(fd)
if fd.IsExtension() {
m.ext[num] = fd
}
return m.known[num]
}
// Set stores a value in a field.
// See [protoreflect.Message] for details.
func (m *Message) Set(fd protoreflect.FieldDescriptor, v protoreflect.Value) {
m.checkField(fd)
if m.known == nil {
panic(errors.New("%v: modification of read-only message", fd.FullName()))
}
if fd.IsExtension() {
isValid := true
switch {
case !fd.(protoreflect.ExtensionTypeDescriptor).Type().IsValidValue(v):
isValid = false
case fd.IsList():
isValid = v.List().IsValid()
case fd.IsMap():
isValid = v.Map().IsValid()
case fd.Message() != nil:
isValid = v.Message().IsValid()
}
if !isValid {
panic(errors.New("%v: assigning invalid type %T", fd.FullName(), v.Interface()))
}
m.ext[fd.Number()] = fd
} else {
typecheck(fd, v)
}
m.clearOtherOneofFields(fd)
m.known[fd.Number()] = v
}
func (m *Message) clearOtherOneofFields(fd protoreflect.FieldDescriptor) {
od := fd.ContainingOneof()
if od == nil {
return
}
num := fd.Number()
for i := 0; i < od.Fields().Len(); i++ {
if n := od.Fields().Get(i).Number(); n != num {
delete(m.known, n)
}
}
}
// NewField returns a new value for assignable to the field of a given descriptor.
// See [protoreflect.Message] for details.
func (m *Message) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value {
m.checkField(fd)
switch {
case fd.IsExtension():
return fd.(protoreflect.ExtensionTypeDescriptor).Type().New()
case fd.IsMap():
return protoreflect.ValueOfMap(&dynamicMap{
desc: fd,
mapv: make(map[interface{}]protoreflect.Value),
})
case fd.IsList():
return protoreflect.ValueOfList(&dynamicList{desc: fd})
case fd.Message() != nil:
return protoreflect.ValueOfMessage(NewMessage(fd.Message()).ProtoReflect())
default:
return fd.Default()
}
}
// WhichOneof reports which field in a oneof is populated, returning nil if none are populated.
// See [protoreflect.Message] for details.
func (m *Message) WhichOneof(od protoreflect.OneofDescriptor) protoreflect.FieldDescriptor {
for i := 0; i < od.Fields().Len(); i++ {
fd := od.Fields().Get(i)
if m.Has(fd) {
return fd
}
}
return nil
}
// GetUnknown returns the raw unknown fields.
// See [protoreflect.Message] for details.
func (m *Message) GetUnknown() protoreflect.RawFields {
return m.unknown
}
// SetUnknown sets the raw unknown fields.
// See [protoreflect.Message] for details.
func (m *Message) SetUnknown(r protoreflect.RawFields) {
if m.known == nil {
panic(errors.New("%v: modification of read-only message", m.typ.desc.FullName()))
}
m.unknown = r
}
// IsValid reports whether the message is valid.
// See [protoreflect.Message] for details.
func (m *Message) IsValid() bool {
return m.known != nil
}
func (m *Message) checkField(fd protoreflect.FieldDescriptor) {
if fd.IsExtension() && fd.ContainingMessage().FullName() == m.Descriptor().FullName() {
if _, ok := fd.(protoreflect.ExtensionTypeDescriptor); !ok {
panic(errors.New("%v: extension field descriptor does not implement ExtensionTypeDescriptor", fd.FullName()))
}
return
}
if fd.Parent() == m.Descriptor() {
return
}
fields := m.Descriptor().Fields()
index := fd.Index()
if index >= fields.Len() || fields.Get(index) != fd {
panic(errors.New("%v: field descriptor does not belong to this message", fd.FullName()))
}
}
type messageType struct {
desc protoreflect.MessageDescriptor
}
// NewMessageType creates a new MessageType with the provided descriptor.
//
// MessageTypes created by this package are equal if their descriptors are equal.
// That is, if md1 == md2, then NewMessageType(md1) == NewMessageType(md2).
func NewMessageType(desc protoreflect.MessageDescriptor) protoreflect.MessageType {
return messageType{desc}
}
func (mt messageType) New() protoreflect.Message { return NewMessage(mt.desc) }
func (mt messageType) Zero() protoreflect.Message { return &Message{typ: messageType{mt.desc}} }
func (mt messageType) Descriptor() protoreflect.MessageDescriptor { return mt.desc }
func (mt messageType) Enum(i int) protoreflect.EnumType {
if ed := mt.desc.Fields().Get(i).Enum(); ed != nil {
return NewEnumType(ed)
}
return nil
}
func (mt messageType) Message(i int) protoreflect.MessageType {
if md := mt.desc.Fields().Get(i).Message(); md != nil {
return NewMessageType(md)
}
return nil
}
type emptyList struct {
desc protoreflect.FieldDescriptor
}
func (x emptyList) Len() int { return 0 }
func (x emptyList) Get(n int) protoreflect.Value { panic(errors.New("out of range")) }
func (x emptyList) Set(n int, v protoreflect.Value) {
panic(errors.New("modification of immutable list"))
}
func (x emptyList) Append(v protoreflect.Value) { panic(errors.New("modification of immutable list")) }
func (x emptyList) AppendMutable() protoreflect.Value {
panic(errors.New("modification of immutable list"))
}
func (x emptyList) Truncate(n int) { panic(errors.New("modification of immutable list")) }
func (x emptyList) NewElement() protoreflect.Value { return newListEntry(x.desc) }
func (x emptyList) IsValid() bool { return false }
type dynamicList struct {
desc protoreflect.FieldDescriptor
list []protoreflect.Value
}
func (x *dynamicList) Len() int {
return len(x.list)
}
func (x *dynamicList) Get(n int) protoreflect.Value {
return x.list[n]
}
func (x *dynamicList) Set(n int, v protoreflect.Value) {
typecheckSingular(x.desc, v)
x.list[n] = v
}
func (x *dynamicList) Append(v protoreflect.Value) {
typecheckSingular(x.desc, v)
x.list = append(x.list, v)
}
func (x *dynamicList) AppendMutable() protoreflect.Value {
if x.desc.Message() == nil {
panic(errors.New("%v: invalid AppendMutable on list with non-message type", x.desc.FullName()))
}
v := x.NewElement()
x.Append(v)
return v
}
func (x *dynamicList) Truncate(n int) {
// Zero truncated elements to avoid keeping data live.
for i := n; i < len(x.list); i++ {
x.list[i] = protoreflect.Value{}
}
x.list = x.list[:n]
}
func (x *dynamicList) NewElement() protoreflect.Value {
return newListEntry(x.desc)
}
func (x *dynamicList) IsValid() bool {
return true
}
type dynamicMap struct {
desc protoreflect.FieldDescriptor
mapv map[interface{}]protoreflect.Value
}
func (x *dynamicMap) Get(k protoreflect.MapKey) protoreflect.Value { return x.mapv[k.Interface()] }
func (x *dynamicMap) Set(k protoreflect.MapKey, v protoreflect.Value) {
typecheckSingular(x.desc.MapKey(), k.Value())
typecheckSingular(x.desc.MapValue(), v)
x.mapv[k.Interface()] = v
}
func (x *dynamicMap) Has(k protoreflect.MapKey) bool { return x.Get(k).IsValid() }
func (x *dynamicMap) Clear(k protoreflect.MapKey) { delete(x.mapv, k.Interface()) }
func (x *dynamicMap) Mutable(k protoreflect.MapKey) protoreflect.Value {
if x.desc.MapValue().Message() == nil {
panic(errors.New("%v: invalid Mutable on map with non-message value type", x.desc.FullName()))
}
v := x.Get(k)
if !v.IsValid() {
v = x.NewValue()
x.Set(k, v)
}
return v
}
func (x *dynamicMap) Len() int { return len(x.mapv) }
func (x *dynamicMap) NewValue() protoreflect.Value {
if md := x.desc.MapValue().Message(); md != nil {
return protoreflect.ValueOfMessage(NewMessage(md).ProtoReflect())
}
return x.desc.MapValue().Default()
}
func (x *dynamicMap) IsValid() bool {
return x.mapv != nil
}
func (x *dynamicMap) Range(f func(protoreflect.MapKey, protoreflect.Value) bool) {
for k, v := range x.mapv {
if !f(protoreflect.ValueOf(k).MapKey(), v) {
return
}
}
}
func isSet(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
switch {
case fd.IsMap():
return v.Map().Len() > 0
case fd.IsList():
return v.List().Len() > 0
case fd.ContainingOneof() != nil:
return true
case fd.Syntax() == protoreflect.Proto3 && !fd.IsExtension():
switch fd.Kind() {
case protoreflect.BoolKind:
return v.Bool()
case protoreflect.EnumKind:
return v.Enum() != 0
case protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Sfixed32Kind, protoreflect.Sfixed64Kind:
return v.Int() != 0
case protoreflect.Uint32Kind, protoreflect.Uint64Kind, protoreflect.Fixed32Kind, protoreflect.Fixed64Kind:
return v.Uint() != 0
case protoreflect.FloatKind, protoreflect.DoubleKind:
return v.Float() != 0 || math.Signbit(v.Float())
case protoreflect.StringKind:
return v.String() != ""
case protoreflect.BytesKind:
return len(v.Bytes()) > 0
}
}
return true
}
func typecheck(fd protoreflect.FieldDescriptor, v protoreflect.Value) {
if err := typeIsValid(fd, v); err != nil {
panic(err)
}
}
func typeIsValid(fd protoreflect.FieldDescriptor, v protoreflect.Value) error {
switch {
case !v.IsValid():
return errors.New("%v: assigning invalid value", fd.FullName())
case fd.IsMap():
if mapv, ok := v.Interface().(*dynamicMap); !ok || mapv.desc != fd || !mapv.IsValid() {
return errors.New("%v: assigning invalid type %T", fd.FullName(), v.Interface())
}
return nil
case fd.IsList():
switch list := v.Interface().(type) {
case *dynamicList:
if list.desc == fd && list.IsValid() {
return nil
}
case emptyList:
if list.desc == fd && list.IsValid() {
return nil
}
}
return errors.New("%v: assigning invalid type %T", fd.FullName(), v.Interface())
default:
return singularTypeIsValid(fd, v)
}
}
func typecheckSingular(fd protoreflect.FieldDescriptor, v protoreflect.Value) {
if err := singularTypeIsValid(fd, v); err != nil {
panic(err)
}
}
func singularTypeIsValid(fd protoreflect.FieldDescriptor, v protoreflect.Value) error {
vi := v.Interface()
var ok bool
switch fd.Kind() {
case protoreflect.BoolKind:
_, ok = vi.(bool)
case protoreflect.EnumKind:
// We could check against the valid set of enum values, but do not.
_, ok = vi.(protoreflect.EnumNumber)
case protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Sfixed32Kind:
_, ok = vi.(int32)
case protoreflect.Uint32Kind, protoreflect.Fixed32Kind:
_, ok = vi.(uint32)
case protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Sfixed64Kind:
_, ok = vi.(int64)
case protoreflect.Uint64Kind, protoreflect.Fixed64Kind:
_, ok = vi.(uint64)
case protoreflect.FloatKind:
_, ok = vi.(float32)
case protoreflect.DoubleKind:
_, ok = vi.(float64)
case protoreflect.StringKind:
_, ok = vi.(string)
case protoreflect.BytesKind:
_, ok = vi.([]byte)
case protoreflect.MessageKind, protoreflect.GroupKind:
var m protoreflect.Message
m, ok = vi.(protoreflect.Message)
if ok && m.Descriptor().FullName() != fd.Message().FullName() {
return errors.New("%v: assigning invalid message type %v", fd.FullName(), m.Descriptor().FullName())
}
if dm, ok := vi.(*Message); ok && dm.known == nil {
return errors.New("%v: assigning invalid zero-value message", fd.FullName())
}
}
if !ok {
return errors.New("%v: assigning invalid type %T", fd.FullName(), v.Interface())
}
return nil
}
func newListEntry(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.Kind() {
case protoreflect.BoolKind:
return protoreflect.ValueOfBool(false)
case protoreflect.EnumKind:
return protoreflect.ValueOfEnum(fd.Enum().Values().Get(0).Number())
case protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Sfixed32Kind:
return protoreflect.ValueOfInt32(0)
case protoreflect.Uint32Kind, protoreflect.Fixed32Kind:
return protoreflect.ValueOfUint32(0)
case protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Sfixed64Kind:
return protoreflect.ValueOfInt64(0)
case protoreflect.Uint64Kind, protoreflect.Fixed64Kind:
return protoreflect.ValueOfUint64(0)
case protoreflect.FloatKind:
return protoreflect.ValueOfFloat32(0)
case protoreflect.DoubleKind:
return protoreflect.ValueOfFloat64(0)
case protoreflect.StringKind:
return protoreflect.ValueOfString("")
case protoreflect.BytesKind:
return protoreflect.ValueOfBytes(nil)
case protoreflect.MessageKind, protoreflect.GroupKind:
return protoreflect.ValueOfMessage(NewMessage(fd.Message()).ProtoReflect())
}
panic(errors.New("%v: unknown kind %v", fd.FullName(), fd.Kind()))
}
// NewExtensionType creates a new ExtensionType with the provided descriptor.
//
// Dynamic ExtensionTypes with the same descriptor compare as equal. That is,
// if xd1 == xd2, then NewExtensionType(xd1) == NewExtensionType(xd2).
//
// The InterfaceOf and ValueOf methods of the extension type are defined as:
//
// func (xt extensionType) ValueOf(iv interface{}) protoreflect.Value {
// return protoreflect.ValueOf(iv)
// }
//
// func (xt extensionType) InterfaceOf(v protoreflect.Value) interface{} {
// return v.Interface()
// }
//
// The Go type used by the proto.GetExtension and proto.SetExtension functions
// is determined by these methods, and is therefore equivalent to the Go type
// used to represent a protoreflect.Value. See the protoreflect.Value
// documentation for more details.
func NewExtensionType(desc protoreflect.ExtensionDescriptor) protoreflect.ExtensionType {
if xt, ok := desc.(protoreflect.ExtensionTypeDescriptor); ok {
desc = xt.Descriptor()
}
return extensionType{extensionTypeDescriptor{desc}}
}
func (xt extensionType) New() protoreflect.Value {
switch {
case xt.desc.IsMap():
return protoreflect.ValueOfMap(&dynamicMap{
desc: xt.desc,
mapv: make(map[interface{}]protoreflect.Value),
})
case xt.desc.IsList():
return protoreflect.ValueOfList(&dynamicList{desc: xt.desc})
case xt.desc.Message() != nil:
return protoreflect.ValueOfMessage(NewMessage(xt.desc.Message()))
default:
return xt.desc.Default()
}
}
func (xt extensionType) Zero() protoreflect.Value {
switch {
case xt.desc.IsMap():
return protoreflect.ValueOfMap(&dynamicMap{desc: xt.desc})
case xt.desc.Cardinality() == protoreflect.Repeated:
return protoreflect.ValueOfList(emptyList{desc: xt.desc})
case xt.desc.Message() != nil:
return protoreflect.ValueOfMessage(&Message{typ: messageType{xt.desc.Message()}})
default:
return xt.desc.Default()
}
}
func (xt extensionType) TypeDescriptor() protoreflect.ExtensionTypeDescriptor {
return xt.desc
}
func (xt extensionType) ValueOf(iv interface{}) protoreflect.Value {
v := protoreflect.ValueOf(iv)
typecheck(xt.desc, v)
return v
}
func (xt extensionType) InterfaceOf(v protoreflect.Value) interface{} {
typecheck(xt.desc, v)
return v.Interface()
}
func (xt extensionType) IsValidInterface(iv interface{}) bool {
return typeIsValid(xt.desc, protoreflect.ValueOf(iv)) == nil
}
func (xt extensionType) IsValidValue(v protoreflect.Value) bool {
return typeIsValid(xt.desc, v) == nil
}
type extensionTypeDescriptor struct {
protoreflect.ExtensionDescriptor
}
func (xt extensionTypeDescriptor) Type() protoreflect.ExtensionType {
return extensionType{xt}
}
func (xt extensionTypeDescriptor) Descriptor() protoreflect.ExtensionDescriptor {
return xt.ExtensionDescriptor
}
|