1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
// Copyright 2012-2015 Oliver Eilhard. All rights reserved.
// Use of this source code is governed by a MIT-license.
// See http://olivere.mit-license.org/license.txt for details.
package elastic
// The more_like_this_field query is the same as the more_like_this query,
// except it runs against a single field. It provides nicer query DSL
// over the generic more_like_this query, and support typed fields query
// (automatically wraps typed fields with type filter to match only
// on the specific type).
//
// For more details, see:
// http://www.elasticsearch.org/guide/reference/query-dsl/mlt-field-query/
type MoreLikeThisFieldQuery struct {
Query
name string
likeText string
percentTermsToMatch *float32
minTermFreq *int
maxQueryTerms *int
stopWords []string
minDocFreq *int
maxDocFreq *int
minWordLen *int
maxWordLen *int
boostTerms *float32
boost *float32
analyzer string
failOnUnsupportedField *bool
}
// Creates a new mlt_field query.
func NewMoreLikeThisFieldQuery(name, likeText string) MoreLikeThisFieldQuery {
q := MoreLikeThisFieldQuery{
name: name,
likeText: likeText,
stopWords: make([]string, 0),
}
return q
}
func (q MoreLikeThisFieldQuery) Name(name string) MoreLikeThisFieldQuery {
q.name = name
return q
}
func (q MoreLikeThisFieldQuery) StopWord(stopWord string) MoreLikeThisFieldQuery {
q.stopWords = append(q.stopWords, stopWord)
return q
}
func (q MoreLikeThisFieldQuery) StopWords(stopWords ...string) MoreLikeThisFieldQuery {
q.stopWords = append(q.stopWords, stopWords...)
return q
}
func (q MoreLikeThisFieldQuery) LikeText(likeText string) MoreLikeThisFieldQuery {
q.likeText = likeText
return q
}
func (q MoreLikeThisFieldQuery) PercentTermsToMatch(percentTermsToMatch float32) MoreLikeThisFieldQuery {
q.percentTermsToMatch = &percentTermsToMatch
return q
}
func (q MoreLikeThisFieldQuery) MinTermFreq(minTermFreq int) MoreLikeThisFieldQuery {
q.minTermFreq = &minTermFreq
return q
}
func (q MoreLikeThisFieldQuery) MaxQueryTerms(maxQueryTerms int) MoreLikeThisFieldQuery {
q.maxQueryTerms = &maxQueryTerms
return q
}
func (q MoreLikeThisFieldQuery) MinDocFreq(minDocFreq int) MoreLikeThisFieldQuery {
q.minDocFreq = &minDocFreq
return q
}
func (q MoreLikeThisFieldQuery) MaxDocFreq(maxDocFreq int) MoreLikeThisFieldQuery {
q.maxDocFreq = &maxDocFreq
return q
}
func (q MoreLikeThisFieldQuery) MinWordLen(minWordLen int) MoreLikeThisFieldQuery {
q.minWordLen = &minWordLen
return q
}
func (q MoreLikeThisFieldQuery) MaxWordLen(maxWordLen int) MoreLikeThisFieldQuery {
q.maxWordLen = &maxWordLen
return q
}
func (q MoreLikeThisFieldQuery) BoostTerms(boostTerms float32) MoreLikeThisFieldQuery {
q.boostTerms = &boostTerms
return q
}
func (q MoreLikeThisFieldQuery) Analyzer(analyzer string) MoreLikeThisFieldQuery {
q.analyzer = analyzer
return q
}
func (q MoreLikeThisFieldQuery) Boost(boost float32) MoreLikeThisFieldQuery {
q.boost = &boost
return q
}
func (q MoreLikeThisFieldQuery) FailOnUnsupportedField(fail bool) MoreLikeThisFieldQuery {
q.failOnUnsupportedField = &fail
return q
}
// Creates the query source for the mlt query.
func (q MoreLikeThisFieldQuery) Source() interface{} {
// {
// "more_like_this_field" : {
// "name.first" : {
// "like_text" : "text like this one",
// "min_term_freq" : 1,
// "max_query_terms" : 12
// }
// }
// }
source := make(map[string]interface{})
params := make(map[string]interface{})
source["more_like_this_field"] = params
mlt := make(map[string]interface{})
params[q.name] = mlt
mlt["like_text"] = q.likeText
if q.percentTermsToMatch != nil {
mlt["percent_terms_to_match"] = *q.percentTermsToMatch
}
if q.minTermFreq != nil {
mlt["min_term_freq"] = *q.minTermFreq
}
if q.maxQueryTerms != nil {
mlt["max_query_terms"] = *q.maxQueryTerms
}
if len(q.stopWords) > 0 {
mlt["stop_words"] = q.stopWords
}
if q.minDocFreq != nil {
mlt["min_doc_freq"] = *q.minDocFreq
}
if q.maxDocFreq != nil {
mlt["max_doc_freq"] = *q.maxDocFreq
}
if q.minWordLen != nil {
mlt["min_word_len"] = *q.minWordLen
}
if q.maxWordLen != nil {
mlt["max_word_len"] = *q.maxWordLen
}
if q.boostTerms != nil {
mlt["boost_terms"] = *q.boostTerms
}
if q.boost != nil {
mlt["boost"] = *q.boost
}
if q.analyzer != "" {
mlt["analyzer"] = q.analyzer
}
if q.failOnUnsupportedField != nil {
mlt["fail_on_unsupported_field"] = *q.failOnUnsupportedField
}
return source
}
|