1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
package encoding
import (
"encoding/base64"
"fmt"
"math"
"reflect"
"time"
)
// newTypeEncoder constructs an encoderFunc for a type.
// The returned encoder only checks CanAddr when allowAddr is true.
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
if t.Implements(marshalerType) {
return marshalerEncoder
}
if t.Kind() != reflect.Ptr && allowAddr {
if reflect.PtrTo(t).Implements(marshalerType) {
return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
}
}
// Check for psuedo-types first
switch t {
case timeType:
return timePseudoTypeEncoder
}
switch t.Kind() {
case reflect.Bool:
return boolEncoder
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return intEncoder
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return uintEncoder
case reflect.Float32:
return float32Encoder
case reflect.Float64:
return floatEncoder
case reflect.String:
return stringEncoder
case reflect.Interface:
return interfaceEncoder
case reflect.Struct:
return newStructEncoder(t)
case reflect.Map:
return newMapEncoder(t)
case reflect.Slice:
return newSliceEncoder(t)
case reflect.Array:
return newArrayEncoder(t)
case reflect.Ptr:
return newPtrEncoder(t)
case reflect.Func:
// functions are a special case as they can be used internally for
// optional arguments. Just return the raw function, if somebody tries
// to pass a function to the database the JSON marshaller will catch this
// anyway.
return funcEncoder
default:
return unsupportedTypeEncoder
}
}
func invalidValueEncoder(v reflect.Value) (interface{}, error) {
return nil, nil
}
func doNothingEncoder(v reflect.Value) (interface{}, error) {
return v.Interface(), nil
}
func marshalerEncoder(v reflect.Value) (interface{}, error) {
if v.Kind() == reflect.Ptr && v.IsNil() {
return nil, nil
}
m := v.Interface().(Marshaler)
ev, err := m.MarshalRQL()
if err != nil {
return nil, &MarshalerError{v.Type(), err}
}
return ev, nil
}
func addrMarshalerEncoder(v reflect.Value) (interface{}, error) {
va := v.Addr()
if va.IsNil() {
return nil, nil
}
m := va.Interface().(Marshaler)
ev, err := m.MarshalRQL()
if err != nil {
return nil, &MarshalerError{v.Type(), err}
}
return ev, nil
}
func boolEncoder(v reflect.Value) (interface{}, error) {
if v.Bool() {
return true, nil
} else {
return false, nil
}
}
func intEncoder(v reflect.Value) (interface{}, error) {
return v.Int(), nil
}
func uintEncoder(v reflect.Value) (interface{}, error) {
return v.Uint(), nil
}
func floatEncoder(v reflect.Value) (interface{}, error) {
return v.Float(), nil
}
func float32Encoder(v reflect.Value) (interface{}, error) {
return float32(v.Float()), nil
}
func stringEncoder(v reflect.Value) (interface{}, error) {
return v.String(), nil
}
func interfaceEncoder(v reflect.Value) (interface{}, error) {
if v.IsNil() {
return nil, nil
}
return encode(v.Elem())
}
func funcEncoder(v reflect.Value) (interface{}, error) {
if v.IsNil() {
return nil, nil
}
return v.Interface(), nil
}
func asStringEncoder(v reflect.Value) (interface{}, error) {
return fmt.Sprintf("%v", v.Interface()), nil
}
func unsupportedTypeEncoder(v reflect.Value) (interface{}, error) {
return nil, &UnsupportedTypeError{v.Type()}
}
type structEncoder struct {
fields []field
fieldEncs []encoderFunc
}
func (se *structEncoder) encode(v reflect.Value) (interface{}, error) {
m := make(map[string]interface{})
for i, f := range se.fields {
fv := fieldByIndex(v, f.index)
if !fv.IsValid() || f.omitEmpty && se.isEmptyValue(fv) {
continue
}
encField, err := se.fieldEncs[i](fv)
if err != nil {
return nil, err
}
// If this field is a referenced field then attempt to extract the value.
if f.reference {
// Override the encoded field with the referenced field
encField = getReferenceField(f, v, encField)
}
if f.compound {
compoundField, ok := m[f.name].([]interface{})
if !ok {
compoundField = make([]interface{}, f.compoundIndex+1)
} else if len(compoundField) < f.compoundIndex+1 {
tmp := make([]interface{}, f.compoundIndex+1)
copy(tmp, compoundField)
compoundField = tmp
}
compoundField[f.compoundIndex] = encField
encField = compoundField
}
m[f.name] = encField
}
return m, nil
}
func getReferenceField(f field, v reflect.Value, encField interface{}) interface{} {
refName := f.name
if f.refName != "" {
refName = f.refName
}
encFields, isArray := encField.([]interface{})
if isArray {
refVals := make([]interface{}, len(encFields))
for i, e := range encFields {
refVals[i] = extractValue(e, v, f.name, refName)
}
return refVals
}
refVal := extractValue(encField, v, f.name, refName)
return refVal
}
func extractValue(encField interface{}, v reflect.Value, name string, refName string) interface{} {
// referenced fields can only handle maps so return an error if the
// encoded field is of a different type
m, ok := encField.(map[string]interface{})
if !ok {
err := fmt.Errorf("Error refing field %s in %s, expected object but got %t", refName, name, encField)
panic(&MarshalerError{v.Type(), err})
}
refVal, ok := m[refName]
if !ok {
err := fmt.Errorf("Error refing field %s in %s, could not find referenced field", refName, name)
panic(&MarshalerError{v.Type(), err})
}
return refVal
}
func (se *structEncoder) isEmptyValue(v reflect.Value) bool {
if v.Type() == timeType {
return v.Interface().(time.Time) == time.Time{}
}
return isEmptyValue(v)
}
func newStructEncoder(t reflect.Type) encoderFunc {
fields := cachedTypeFields(t)
se := &structEncoder{
fields: fields,
fieldEncs: make([]encoderFunc, len(fields)),
}
for i, f := range fields {
se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
}
return se.encode
}
type mapEncoder struct {
keyEnc, elemEnc encoderFunc
}
func (me *mapEncoder) encode(v reflect.Value) (interface{}, error) {
if v.IsNil() {
return nil, nil
}
m := make(map[string]interface{})
for _, k := range v.MapKeys() {
encV, err := me.elemEnc(v.MapIndex(k))
if err != nil {
return nil, err
}
encK, err := me.keyEnc(k)
if err != nil {
return nil, err
}
m[encK.(string)] = encV
}
return m, nil
}
func newMapEncoder(t reflect.Type) encoderFunc {
var keyEnc encoderFunc
switch t.Key().Kind() {
case reflect.Bool:
keyEnc = asStringEncoder
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
keyEnc = asStringEncoder
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
keyEnc = asStringEncoder
case reflect.Float32, reflect.Float64:
keyEnc = asStringEncoder
case reflect.String:
keyEnc = stringEncoder
case reflect.Interface:
keyEnc = asStringEncoder
default:
return unsupportedTypeEncoder
}
me := &mapEncoder{keyEnc, typeEncoder(t.Elem())}
return me.encode
}
// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
type sliceEncoder struct {
arrayEnc encoderFunc
}
func (se *sliceEncoder) encode(v reflect.Value) (interface{}, error) {
if v.IsNil() {
return []interface{}(nil), nil
}
return se.arrayEnc(v)
}
func newSliceEncoder(t reflect.Type) encoderFunc {
// Byte slices get special treatment; arrays don't.
if t.Elem().Kind() == reflect.Uint8 {
return encodeByteSlice
}
enc := &sliceEncoder{newArrayEncoder(t)}
return enc.encode
}
type arrayEncoder struct {
elemEnc encoderFunc
}
func (ae *arrayEncoder) encode(v reflect.Value) (interface{}, error) {
n := v.Len()
a := make([]interface{}, n)
for i := 0; i < n; i++ {
var err error
a[i], err = ae.elemEnc(v.Index(i))
if err != nil {
return nil, err
}
}
return a, nil
}
func newArrayEncoder(t reflect.Type) encoderFunc {
if t.Elem().Kind() == reflect.Uint8 {
return encodeByteArray
}
enc := &arrayEncoder{typeEncoder(t.Elem())}
return enc.encode
}
type ptrEncoder struct {
elemEnc encoderFunc
}
func (pe *ptrEncoder) encode(v reflect.Value) (interface{}, error) {
if v.IsNil() {
return nil, nil
}
return pe.elemEnc(v.Elem())
}
func newPtrEncoder(t reflect.Type) encoderFunc {
enc := &ptrEncoder{typeEncoder(t.Elem())}
return enc.encode
}
type condAddrEncoder struct {
canAddrEnc, elseEnc encoderFunc
}
func (ce *condAddrEncoder) encode(v reflect.Value) (interface{}, error) {
if v.CanAddr() {
return ce.canAddrEnc(v)
} else {
return ce.elseEnc(v)
}
}
// newCondAddrEncoder returns an encoder that checks whether its value
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
return enc.encode
}
// Pseudo-type encoders
// Encode a time.Time value to the TIME RQL type
func timePseudoTypeEncoder(v reflect.Value) (interface{}, error) {
t := v.Interface().(time.Time)
timeVal := float64(t.UnixNano()) / float64(time.Second)
// use seconds-since-epoch precision if time.Time `t`
// is before the oldest nanosecond time
if t.Before(time.Unix(0, math.MinInt64)) {
timeVal = float64(t.Unix())
}
return map[string]interface{}{
"$reql_type$": "TIME",
"epoch_time": timeVal,
"timezone": t.Format("-07:00"),
}, nil
}
// Encode a byte slice to the BINARY RQL type
func encodeByteSlice(v reflect.Value) (interface{}, error) {
var b []byte
if !v.IsNil() {
b = v.Bytes()
}
dst := make([]byte, base64.StdEncoding.EncodedLen(len(b)))
base64.StdEncoding.Encode(dst, b)
return map[string]interface{}{
"$reql_type$": "BINARY",
"data": string(dst),
}, nil
}
// Encode a byte array to the BINARY RQL type
func encodeByteArray(v reflect.Value) (interface{}, error) {
b := make([]byte, v.Len())
for i := 0; i < v.Len(); i++ {
b[i] = v.Index(i).Interface().(byte)
}
dst := make([]byte, base64.StdEncoding.EncodedLen(len(b)))
base64.StdEncoding.Encode(dst, b)
return map[string]interface{}{
"$reql_type$": "BINARY",
"data": string(dst),
}, nil
}
|