File: asymmetric.go

package info (click to toggle)
golang-gopkg-square-go-jose.v2 2.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, experimental, sid
  • size: 1,004 kB
  • sloc: makefile: 4
file content (592 lines) | stat: -rw-r--r-- 15,862 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*-
 * Copyright 2014 Square Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package jose

import (
	"crypto"
	"crypto/aes"
	"crypto/ecdsa"
	"crypto/rand"
	"crypto/rsa"
	"crypto/sha1"
	"crypto/sha256"
	"errors"
	"fmt"
	"math/big"

	"golang.org/x/crypto/ed25519"
	josecipher "gopkg.in/square/go-jose.v2/cipher"
	"gopkg.in/square/go-jose.v2/json"
)

// A generic RSA-based encrypter/verifier
type rsaEncrypterVerifier struct {
	publicKey *rsa.PublicKey
}

// A generic RSA-based decrypter/signer
type rsaDecrypterSigner struct {
	privateKey *rsa.PrivateKey
}

// A generic EC-based encrypter/verifier
type ecEncrypterVerifier struct {
	publicKey *ecdsa.PublicKey
}

type edEncrypterVerifier struct {
	publicKey ed25519.PublicKey
}

// A key generator for ECDH-ES
type ecKeyGenerator struct {
	size      int
	algID     string
	publicKey *ecdsa.PublicKey
}

// A generic EC-based decrypter/signer
type ecDecrypterSigner struct {
	privateKey *ecdsa.PrivateKey
}

type edDecrypterSigner struct {
	privateKey ed25519.PrivateKey
}

// newRSARecipient creates recipientKeyInfo based on the given key.
func newRSARecipient(keyAlg KeyAlgorithm, publicKey *rsa.PublicKey) (recipientKeyInfo, error) {
	// Verify that key management algorithm is supported by this encrypter
	switch keyAlg {
	case RSA1_5, RSA_OAEP, RSA_OAEP_256:
	default:
		return recipientKeyInfo{}, ErrUnsupportedAlgorithm
	}

	if publicKey == nil {
		return recipientKeyInfo{}, errors.New("invalid public key")
	}

	return recipientKeyInfo{
		keyAlg: keyAlg,
		keyEncrypter: &rsaEncrypterVerifier{
			publicKey: publicKey,
		},
	}, nil
}

// newRSASigner creates a recipientSigInfo based on the given key.
func newRSASigner(sigAlg SignatureAlgorithm, privateKey *rsa.PrivateKey) (recipientSigInfo, error) {
	// Verify that key management algorithm is supported by this encrypter
	switch sigAlg {
	case RS256, RS384, RS512, PS256, PS384, PS512:
	default:
		return recipientSigInfo{}, ErrUnsupportedAlgorithm
	}

	if privateKey == nil {
		return recipientSigInfo{}, errors.New("invalid private key")
	}

	return recipientSigInfo{
		sigAlg: sigAlg,
		publicKey: staticPublicKey(&JSONWebKey{
			Key: privateKey.Public(),
		}),
		signer: &rsaDecrypterSigner{
			privateKey: privateKey,
		},
	}, nil
}

func newEd25519Signer(sigAlg SignatureAlgorithm, privateKey ed25519.PrivateKey) (recipientSigInfo, error) {
	if sigAlg != EdDSA {
		return recipientSigInfo{}, ErrUnsupportedAlgorithm
	}

	if privateKey == nil {
		return recipientSigInfo{}, errors.New("invalid private key")
	}
	return recipientSigInfo{
		sigAlg: sigAlg,
		publicKey: staticPublicKey(&JSONWebKey{
			Key: privateKey.Public(),
		}),
		signer: &edDecrypterSigner{
			privateKey: privateKey,
		},
	}, nil
}

// newECDHRecipient creates recipientKeyInfo based on the given key.
func newECDHRecipient(keyAlg KeyAlgorithm, publicKey *ecdsa.PublicKey) (recipientKeyInfo, error) {
	// Verify that key management algorithm is supported by this encrypter
	switch keyAlg {
	case ECDH_ES, ECDH_ES_A128KW, ECDH_ES_A192KW, ECDH_ES_A256KW:
	default:
		return recipientKeyInfo{}, ErrUnsupportedAlgorithm
	}

	if publicKey == nil || !publicKey.Curve.IsOnCurve(publicKey.X, publicKey.Y) {
		return recipientKeyInfo{}, errors.New("invalid public key")
	}

	return recipientKeyInfo{
		keyAlg: keyAlg,
		keyEncrypter: &ecEncrypterVerifier{
			publicKey: publicKey,
		},
	}, nil
}

// newECDSASigner creates a recipientSigInfo based on the given key.
func newECDSASigner(sigAlg SignatureAlgorithm, privateKey *ecdsa.PrivateKey) (recipientSigInfo, error) {
	// Verify that key management algorithm is supported by this encrypter
	switch sigAlg {
	case ES256, ES384, ES512:
	default:
		return recipientSigInfo{}, ErrUnsupportedAlgorithm
	}

	if privateKey == nil {
		return recipientSigInfo{}, errors.New("invalid private key")
	}

	return recipientSigInfo{
		sigAlg: sigAlg,
		publicKey: staticPublicKey(&JSONWebKey{
			Key: privateKey.Public(),
		}),
		signer: &ecDecrypterSigner{
			privateKey: privateKey,
		},
	}, nil
}

// Encrypt the given payload and update the object.
func (ctx rsaEncrypterVerifier) encryptKey(cek []byte, alg KeyAlgorithm) (recipientInfo, error) {
	encryptedKey, err := ctx.encrypt(cek, alg)
	if err != nil {
		return recipientInfo{}, err
	}

	return recipientInfo{
		encryptedKey: encryptedKey,
		header:       &rawHeader{},
	}, nil
}

// Encrypt the given payload. Based on the key encryption algorithm,
// this will either use RSA-PKCS1v1.5 or RSA-OAEP (with SHA-1 or SHA-256).
func (ctx rsaEncrypterVerifier) encrypt(cek []byte, alg KeyAlgorithm) ([]byte, error) {
	switch alg {
	case RSA1_5:
		return rsa.EncryptPKCS1v15(RandReader, ctx.publicKey, cek)
	case RSA_OAEP:
		return rsa.EncryptOAEP(sha1.New(), RandReader, ctx.publicKey, cek, []byte{})
	case RSA_OAEP_256:
		return rsa.EncryptOAEP(sha256.New(), RandReader, ctx.publicKey, cek, []byte{})
	}

	return nil, ErrUnsupportedAlgorithm
}

// Decrypt the given payload and return the content encryption key.
func (ctx rsaDecrypterSigner) decryptKey(headers rawHeader, recipient *recipientInfo, generator keyGenerator) ([]byte, error) {
	return ctx.decrypt(recipient.encryptedKey, headers.getAlgorithm(), generator)
}

// Decrypt the given payload. Based on the key encryption algorithm,
// this will either use RSA-PKCS1v1.5 or RSA-OAEP (with SHA-1 or SHA-256).
func (ctx rsaDecrypterSigner) decrypt(jek []byte, alg KeyAlgorithm, generator keyGenerator) ([]byte, error) {
	// Note: The random reader on decrypt operations is only used for blinding,
	// so stubbing is meanlingless (hence the direct use of rand.Reader).
	switch alg {
	case RSA1_5:
		defer func() {
			// DecryptPKCS1v15SessionKey sometimes panics on an invalid payload
			// because of an index out of bounds error, which we want to ignore.
			// This has been fixed in Go 1.3.1 (released 2014/08/13), the recover()
			// only exists for preventing crashes with unpatched versions.
			// See: https://groups.google.com/forum/#!topic/golang-dev/7ihX6Y6kx9k
			// See: https://code.google.com/p/go/source/detail?r=58ee390ff31602edb66af41ed10901ec95904d33
			_ = recover()
		}()

		// Perform some input validation.
		keyBytes := ctx.privateKey.PublicKey.N.BitLen() / 8
		if keyBytes != len(jek) {
			// Input size is incorrect, the encrypted payload should always match
			// the size of the public modulus (e.g. using a 2048 bit key will
			// produce 256 bytes of output). Reject this since it's invalid input.
			return nil, ErrCryptoFailure
		}

		cek, _, err := generator.genKey()
		if err != nil {
			return nil, ErrCryptoFailure
		}

		// When decrypting an RSA-PKCS1v1.5 payload, we must take precautions to
		// prevent chosen-ciphertext attacks as described in RFC 3218, "Preventing
		// the Million Message Attack on Cryptographic Message Syntax". We are
		// therefore deliberately ignoring errors here.
		_ = rsa.DecryptPKCS1v15SessionKey(rand.Reader, ctx.privateKey, jek, cek)

		return cek, nil
	case RSA_OAEP:
		// Use rand.Reader for RSA blinding
		return rsa.DecryptOAEP(sha1.New(), rand.Reader, ctx.privateKey, jek, []byte{})
	case RSA_OAEP_256:
		// Use rand.Reader for RSA blinding
		return rsa.DecryptOAEP(sha256.New(), rand.Reader, ctx.privateKey, jek, []byte{})
	}

	return nil, ErrUnsupportedAlgorithm
}

// Sign the given payload
func (ctx rsaDecrypterSigner) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) {
	var hash crypto.Hash

	switch alg {
	case RS256, PS256:
		hash = crypto.SHA256
	case RS384, PS384:
		hash = crypto.SHA384
	case RS512, PS512:
		hash = crypto.SHA512
	default:
		return Signature{}, ErrUnsupportedAlgorithm
	}

	hasher := hash.New()

	// According to documentation, Write() on hash never fails
	_, _ = hasher.Write(payload)
	hashed := hasher.Sum(nil)

	var out []byte
	var err error

	switch alg {
	case RS256, RS384, RS512:
		out, err = rsa.SignPKCS1v15(RandReader, ctx.privateKey, hash, hashed)
	case PS256, PS384, PS512:
		out, err = rsa.SignPSS(RandReader, ctx.privateKey, hash, hashed, &rsa.PSSOptions{
			SaltLength: rsa.PSSSaltLengthEqualsHash,
		})
	}

	if err != nil {
		return Signature{}, err
	}

	return Signature{
		Signature: out,
		protected: &rawHeader{},
	}, nil
}

// Verify the given payload
func (ctx rsaEncrypterVerifier) verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error {
	var hash crypto.Hash

	switch alg {
	case RS256, PS256:
		hash = crypto.SHA256
	case RS384, PS384:
		hash = crypto.SHA384
	case RS512, PS512:
		hash = crypto.SHA512
	default:
		return ErrUnsupportedAlgorithm
	}

	hasher := hash.New()

	// According to documentation, Write() on hash never fails
	_, _ = hasher.Write(payload)
	hashed := hasher.Sum(nil)

	switch alg {
	case RS256, RS384, RS512:
		return rsa.VerifyPKCS1v15(ctx.publicKey, hash, hashed, signature)
	case PS256, PS384, PS512:
		return rsa.VerifyPSS(ctx.publicKey, hash, hashed, signature, nil)
	}

	return ErrUnsupportedAlgorithm
}

// Encrypt the given payload and update the object.
func (ctx ecEncrypterVerifier) encryptKey(cek []byte, alg KeyAlgorithm) (recipientInfo, error) {
	switch alg {
	case ECDH_ES:
		// ECDH-ES mode doesn't wrap a key, the shared secret is used directly as the key.
		return recipientInfo{
			header: &rawHeader{},
		}, nil
	case ECDH_ES_A128KW, ECDH_ES_A192KW, ECDH_ES_A256KW:
	default:
		return recipientInfo{}, ErrUnsupportedAlgorithm
	}

	generator := ecKeyGenerator{
		algID:     string(alg),
		publicKey: ctx.publicKey,
	}

	switch alg {
	case ECDH_ES_A128KW:
		generator.size = 16
	case ECDH_ES_A192KW:
		generator.size = 24
	case ECDH_ES_A256KW:
		generator.size = 32
	}

	kek, header, err := generator.genKey()
	if err != nil {
		return recipientInfo{}, err
	}

	block, err := aes.NewCipher(kek)
	if err != nil {
		return recipientInfo{}, err
	}

	jek, err := josecipher.KeyWrap(block, cek)
	if err != nil {
		return recipientInfo{}, err
	}

	return recipientInfo{
		encryptedKey: jek,
		header:       &header,
	}, nil
}

// Get key size for EC key generator
func (ctx ecKeyGenerator) keySize() int {
	return ctx.size
}

// Get a content encryption key for ECDH-ES
func (ctx ecKeyGenerator) genKey() ([]byte, rawHeader, error) {
	priv, err := ecdsa.GenerateKey(ctx.publicKey.Curve, RandReader)
	if err != nil {
		return nil, rawHeader{}, err
	}

	out := josecipher.DeriveECDHES(ctx.algID, []byte{}, []byte{}, priv, ctx.publicKey, ctx.size)

	b, err := json.Marshal(&JSONWebKey{
		Key: &priv.PublicKey,
	})
	if err != nil {
		return nil, nil, err
	}

	headers := rawHeader{
		headerEPK: makeRawMessage(b),
	}

	return out, headers, nil
}

// Decrypt the given payload and return the content encryption key.
func (ctx ecDecrypterSigner) decryptKey(headers rawHeader, recipient *recipientInfo, generator keyGenerator) ([]byte, error) {
	epk, err := headers.getEPK()
	if err != nil {
		return nil, errors.New("square/go-jose: invalid epk header")
	}
	if epk == nil {
		return nil, errors.New("square/go-jose: missing epk header")
	}

	publicKey, ok := epk.Key.(*ecdsa.PublicKey)
	if publicKey == nil || !ok {
		return nil, errors.New("square/go-jose: invalid epk header")
	}

	if !ctx.privateKey.Curve.IsOnCurve(publicKey.X, publicKey.Y) {
		return nil, errors.New("square/go-jose: invalid public key in epk header")
	}

	apuData, err := headers.getAPU()
	if err != nil {
		return nil, errors.New("square/go-jose: invalid apu header")
	}
	apvData, err := headers.getAPV()
	if err != nil {
		return nil, errors.New("square/go-jose: invalid apv header")
	}

	deriveKey := func(algID string, size int) []byte {
		return josecipher.DeriveECDHES(algID, apuData.bytes(), apvData.bytes(), ctx.privateKey, publicKey, size)
	}

	var keySize int

	algorithm := headers.getAlgorithm()
	switch algorithm {
	case ECDH_ES:
		// ECDH-ES uses direct key agreement, no key unwrapping necessary.
		return deriveKey(string(headers.getEncryption()), generator.keySize()), nil
	case ECDH_ES_A128KW:
		keySize = 16
	case ECDH_ES_A192KW:
		keySize = 24
	case ECDH_ES_A256KW:
		keySize = 32
	default:
		return nil, ErrUnsupportedAlgorithm
	}

	key := deriveKey(string(algorithm), keySize)
	block, err := aes.NewCipher(key)
	if err != nil {
		return nil, err
	}

	return josecipher.KeyUnwrap(block, recipient.encryptedKey)
}

func (ctx edDecrypterSigner) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) {
	if alg != EdDSA {
		return Signature{}, ErrUnsupportedAlgorithm
	}

	sig, err := ctx.privateKey.Sign(RandReader, payload, crypto.Hash(0))
	if err != nil {
		return Signature{}, err
	}

	return Signature{
		Signature: sig,
		protected: &rawHeader{},
	}, nil
}

func (ctx edEncrypterVerifier) verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error {
	if alg != EdDSA {
		return ErrUnsupportedAlgorithm
	}
	ok := ed25519.Verify(ctx.publicKey, payload, signature)
	if !ok {
		return errors.New("square/go-jose: ed25519 signature failed to verify")
	}
	return nil
}

// Sign the given payload
func (ctx ecDecrypterSigner) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) {
	var expectedBitSize int
	var hash crypto.Hash

	switch alg {
	case ES256:
		expectedBitSize = 256
		hash = crypto.SHA256
	case ES384:
		expectedBitSize = 384
		hash = crypto.SHA384
	case ES512:
		expectedBitSize = 521
		hash = crypto.SHA512
	}

	curveBits := ctx.privateKey.Curve.Params().BitSize
	if expectedBitSize != curveBits {
		return Signature{}, fmt.Errorf("square/go-jose: expected %d bit key, got %d bits instead", expectedBitSize, curveBits)
	}

	hasher := hash.New()

	// According to documentation, Write() on hash never fails
	_, _ = hasher.Write(payload)
	hashed := hasher.Sum(nil)

	r, s, err := ecdsa.Sign(RandReader, ctx.privateKey, hashed)
	if err != nil {
		return Signature{}, err
	}

	keyBytes := curveBits / 8
	if curveBits%8 > 0 {
		keyBytes++
	}

	// We serialize the outputs (r and s) into big-endian byte arrays and pad
	// them with zeros on the left to make sure the sizes work out. Both arrays
	// must be keyBytes long, and the output must be 2*keyBytes long.
	rBytes := r.Bytes()
	rBytesPadded := make([]byte, keyBytes)
	copy(rBytesPadded[keyBytes-len(rBytes):], rBytes)

	sBytes := s.Bytes()
	sBytesPadded := make([]byte, keyBytes)
	copy(sBytesPadded[keyBytes-len(sBytes):], sBytes)

	out := append(rBytesPadded, sBytesPadded...)

	return Signature{
		Signature: out,
		protected: &rawHeader{},
	}, nil
}

// Verify the given payload
func (ctx ecEncrypterVerifier) verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error {
	var keySize int
	var hash crypto.Hash

	switch alg {
	case ES256:
		keySize = 32
		hash = crypto.SHA256
	case ES384:
		keySize = 48
		hash = crypto.SHA384
	case ES512:
		keySize = 66
		hash = crypto.SHA512
	default:
		return ErrUnsupportedAlgorithm
	}

	if len(signature) != 2*keySize {
		return fmt.Errorf("square/go-jose: invalid signature size, have %d bytes, wanted %d", len(signature), 2*keySize)
	}

	hasher := hash.New()

	// According to documentation, Write() on hash never fails
	_, _ = hasher.Write(payload)
	hashed := hasher.Sum(nil)

	r := big.NewInt(0).SetBytes(signature[:keySize])
	s := big.NewInt(0).SetBytes(signature[keySize:])

	match := ecdsa.Verify(ctx.publicKey, hashed, r, s)
	if !match {
		return errors.New("square/go-jose: ecdsa signature failed to verify")
	}

	return nil
}