1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.1 && ignore
// +build go1.1,ignore
// Package coverage provides an interface through which Go coverage data can
// be collected, converted to kcov format, and exposed to userspace.
//
// Coverage can be enabled by calling bazel {build,test} with
// --collect_coverage_data and --instrumentation_filter with the desired
// coverage surface. This causes bazel to use the Go cover tool manually to
// generate instrumented files. It injects a hook that registers all coverage
// data with the coverdata package.
//
// Using coverdata.Counters requires sync/atomic integers.
// +checkalignedignore
package coverage
import (
"fmt"
"io"
"sort"
"sync/atomic"
"testing"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sync"
"github.com/bazelbuild/rules_go/go/tools/coverdata"
)
var (
// coverageMu must be held while accessing coverdata.*. This prevents
// concurrent reads/writes from multiple threads collecting coverage data.
coverageMu sync.RWMutex
// reportOutput is the place to write out a coverage report. It should be
// closed after the report is written. It is protected by reportOutputMu.
reportOutput io.WriteCloser
reportOutputMu sync.Mutex
)
// blockBitLength is the number of bits used to represent coverage block index
// in a synthetic PC (the rest are used to represent the file index). Even
// though a PC has 64 bits, we only use the lower 32 bits because some users
// (e.g., syzkaller) may truncate that address to a 32-bit value.
//
// As of this writing, there are ~1200 files that can be instrumented and at
// most ~1200 blocks per file, so 16 bits is more than enough to represent every
// file and every block.
const blockBitLength = 16
// Available returns whether any coverage data is available.
func Available() bool {
return len(coverdata.Blocks) > 0
}
// EnableReport sets up coverage reporting.
func EnableReport(w io.WriteCloser) {
reportOutputMu.Lock()
defer reportOutputMu.Unlock()
reportOutput = w
}
// KcovSupported returns whether the kcov interface should be made available.
//
// If coverage reporting is on, do not turn on kcov, which will consume
// coverage data.
func KcovSupported() bool {
return (reportOutput == nil) && Available()
}
var globalData struct {
// files is the set of covered files sorted by filename. It is calculated at
// startup.
files []string
// syntheticPCs are a set of PCs calculated at startup, where the PC
// at syntheticPCs[i][j] corresponds to file i, block j.
syntheticPCs [][]uint64
// once ensures that globalData is only initialized once.
once sync.Once
}
// ClearCoverageData clears existing coverage data.
//
//go:norace
func ClearCoverageData() {
coverageMu.Lock()
defer coverageMu.Unlock()
// We do not use atomic operations while reading/writing to the counters,
// which would drastically degrade performance. Slight discrepancies due to
// racing is okay for the purposes of kcov.
for _, counters := range coverdata.Counters {
for index := 0; index < len(counters); index++ {
counters[index] = 0
}
}
}
var coveragePool = sync.Pool{
New: func() any {
return make([]byte, 0)
},
}
// ConsumeCoverageData builds and writes the collection of covered PCs. It
// returns the number of bytes written.
//
// In Linux, a kernel configuration is set that compiles the kernel with a
// custom function that is called at the beginning of every basic block, which
// updates the memory-mapped coverage information. The Go coverage tool does not
// allow us to inject arbitrary instructions into basic blocks, but it does
// provide data that we can convert to a kcov-like format and transfer them to
// userspace through a memory mapping.
//
// Note that this is not a strict implementation of kcov, which is especially
// tricky to do because we do not have the same coverage tools available in Go
// that that are available for the actual Linux kernel. In Linux, a kernel
// configuration is set that compiles the kernel with a custom function that is
// called at the beginning of every basic block to write program counters to the
// kcov memory mapping. In Go, however, coverage tools only give us a count of
// basic blocks as they are executed. Every time we return to userspace, we
// collect the coverage information and write out PCs for each block that was
// executed, providing userspace with the illusion that the kcov data is always
// up to date. For convenience, we also generate a unique synthetic PC for each
// block instead of using actual PCs. Finally, we do not provide thread-specific
// coverage data (each kcov instance only contains PCs executed by the thread
// owning it); instead, we will supply data for any file specified by --
// instrumentation_filter.
//
// Note that we "consume", i.e. clear, coverdata when this function is run, to
// ensure that each event is only reported once. Due to the limitations of Go
// coverage tools, we reset the global coverage data every time this function is
// run.
//
//go:norace
func ConsumeCoverageData(w io.Writer) int {
InitCoverageData()
coverageMu.Lock()
defer coverageMu.Unlock()
total := 0
var pcBuffer [8]byte
for fileNum, file := range globalData.files {
counters := coverdata.Counters[file]
for index := 0; index < len(counters); index++ {
// We do not use atomic operations while reading/writing to the counters,
// which would drastically degrade performance. Slight discrepancies due to
// racing is okay for the purposes of kcov.
if counters[index] == 0 {
continue
}
// Non-zero coverage data found; consume it and report as a PC.
counters[index] = 0
pc := globalData.syntheticPCs[fileNum][index]
hostarch.ByteOrder.PutUint64(pcBuffer[:], pc)
n, err := w.Write(pcBuffer[:])
if err != nil {
if err == io.EOF {
// Simply stop writing if we encounter EOF; it's ok if we attempted to
// write more than we can hold.
return total + n
}
panic(fmt.Sprintf("Internal error writing PCs to kcov area: %v", err))
}
total += n
}
}
if total == 0 {
// An empty profile indicates that coverage is not enabled, in which case
// there shouldn't be any task work registered.
panic("kcov task work is registered, but no coverage data was found")
}
return total
}
// InitCoverageData initializes globalData. It should be called before any kcov
// data is written.
func InitCoverageData() {
globalData.once.Do(func() {
// First, order all files. Then calculate synthetic PCs for every block
// (using the well-defined ordering for files as well).
for file := range coverdata.Blocks {
globalData.files = append(globalData.files, file)
}
sort.Strings(globalData.files)
for fileNum, file := range globalData.files {
blocks := coverdata.Blocks[file]
pcs := make([]uint64, 0, len(blocks))
for blockNum := range blocks {
pcs = append(pcs, calculateSyntheticPC(fileNum, blockNum))
}
globalData.syntheticPCs = append(globalData.syntheticPCs, pcs)
}
})
}
// reportOnce ensures that a coverage report is written at most once. For a
// complete coverage report, Report should be called during the sandbox teardown
// process. Report is called from multiple places (which may overlap) so that a
// coverage report is written in different sandbox exit scenarios.
var reportOnce sync.Once
// Report writes out a coverage report with all blocks that have been covered.
//
// TODO(b/144576401): Decide whether this should actually be in LCOV format
func Report() error {
if reportOutput == nil {
return nil
}
var err error
reportOnce.Do(func() {
for file, counters := range coverdata.Counters {
blocks := coverdata.Blocks[file]
for i := 0; i < len(counters); i++ {
if atomic.LoadUint32(&counters[i]) > 0 {
err = writeBlock(reportOutput, file, blocks[i])
if err != nil {
return
}
}
}
}
reportOutput.Close()
})
return err
}
// Symbolize prints information about the block corresponding to pc.
func Symbolize(out io.Writer, pc uint64) error {
fileNum, blockNum := syntheticPCToIndexes(pc)
file, err := fileFromIndex(fileNum)
if err != nil {
return err
}
block, err := blockFromIndex(file, blockNum)
if err != nil {
return err
}
return writeBlockWithPC(out, pc, file, block)
}
// WriteAllBlocks prints all information about all blocks along with their
// corresponding synthetic PCs.
func WriteAllBlocks(out io.Writer) error {
for fileNum, file := range globalData.files {
for blockNum, block := range coverdata.Blocks[file] {
if err := writeBlockWithPC(out, calculateSyntheticPC(fileNum, blockNum), file, block); err != nil {
return err
}
}
}
return nil
}
func writeBlockWithPC(out io.Writer, pc uint64, file string, block testing.CoverBlock) error {
if _, err := io.WriteString(out, fmt.Sprintf("%#x\n", pc)); err != nil {
return err
}
return writeBlock(out, file, block)
}
func writeBlock(out io.Writer, file string, block testing.CoverBlock) error {
_, err := io.WriteString(out, fmt.Sprintf("%s:%d.%d,%d.%d\n", file, block.Line0, block.Col0, block.Line1, block.Col1))
return err
}
func calculateSyntheticPC(fileNum int, blockNum int) uint64 {
return (uint64(fileNum) << blockBitLength) + uint64(blockNum)
}
func syntheticPCToIndexes(pc uint64) (fileNum int, blockNum int) {
return int(pc >> blockBitLength), int(pc & ((1 << blockBitLength) - 1))
}
// fileFromIndex returns the name of the file in the sorted list of instrumented files.
func fileFromIndex(i int) (string, error) {
total := len(globalData.files)
if i < 0 || i >= total {
return "", fmt.Errorf("file index out of range: [%d] with length %d", i, total)
}
return globalData.files[i], nil
}
// blockFromIndex returns the i-th block in the given file.
func blockFromIndex(file string, i int) (testing.CoverBlock, error) {
blocks, ok := coverdata.Blocks[file]
if !ok {
return testing.CoverBlock{}, fmt.Errorf("instrumented file %s does not exist", file)
}
total := len(blocks)
if i < 0 || i >= total {
return testing.CoverBlock{}, fmt.Errorf("block index out of range: [%d] with length %d", i, total)
}
return blocks[i], nil
}
|