1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build amd64
// +build amd64
package cpuid
import (
"fmt"
"io"
)
// FeatureSet defines features in terms of CPUID leaves and bits.
//
// Common references:
//
// Intel:
// - Intel SDM Volume 2, Chapter 3.2 "CPUID" (more up-to-date)
// - Intel Application Note 485 (more detailed)
//
// AMD:
// - AMD64 APM Volume 3, Appendix 3 "Obtaining Processor Information ..."
//
// +stateify savable
type FeatureSet struct {
// Function is the underlying CPUID Function.
//
// This is exported to allow direct calls of the underlying CPUID
// function, where required.
Function `state:".(Static)"`
}
// saveFunction saves the function as a static query.
func (fs *FeatureSet) saveFunction() Static {
if s, ok := fs.Function.(Static); ok {
return s
}
return fs.ToStatic()
}
// loadFunction saves the function as a static query.
func (fs *FeatureSet) loadFunction(s Static) {
fs.Function = s
}
// Helper to convert 3 regs into 12-byte vendor ID.
//
//go:nosplit
func vendorIDFromRegs(bx, cx, dx uint32) (r [12]byte) {
for i := uint(0); i < 4; i++ {
b := byte(bx >> (i * 8))
r[i] = b
}
for i := uint(0); i < 4; i++ {
b := byte(dx >> (i * 8))
r[4+i] = b
}
for i := uint(0); i < 4; i++ {
b := byte(cx >> (i * 8))
r[8+i] = b
}
return r
}
// Helper to merge a 12-byte vendor ID back to registers.
//
// Used by static_amd64.go.
func regsFromVendorID(r [12]byte) (bx, cx, dx uint32) {
bx |= uint32(r[0])
bx |= uint32(r[1]) << 8
bx |= uint32(r[2]) << 16
bx |= uint32(r[3]) << 24
cx |= uint32(r[4])
cx |= uint32(r[5]) << 8
cx |= uint32(r[6]) << 16
cx |= uint32(r[7]) << 24
dx |= uint32(r[8])
dx |= uint32(r[9]) << 8
dx |= uint32(r[10]) << 16
dx |= uint32(r[10]) << 24
return
}
// VendorID is the 12-char string returned in ebx:edx:ecx for eax=0.
//
//go:nosplit
func (fs FeatureSet) VendorID() [12]byte {
_, bx, cx, dx := fs.query(vendorID)
return vendorIDFromRegs(bx, cx, dx)
}
// Helper to deconstruct signature dword.
//
//go:nosplit
func signatureSplit(v uint32) (ef, em, pt, f, m, sid uint8) {
sid = uint8(v & 0xf)
m = uint8(v>>4) & 0xf
f = uint8(v>>8) & 0xf
pt = uint8(v>>12) & 0x3
em = uint8(v>>16) & 0xf
ef = uint8(v >> 20)
return
}
// ExtendedFamily is part of the processor signature.
//
//go:nosplit
func (fs FeatureSet) ExtendedFamily() uint8 {
ax, _, _, _ := fs.query(featureInfo)
ef, _, _, _, _, _ := signatureSplit(ax)
return ef
}
// ExtendedModel is part of the processor signature.
//
//go:nosplit
func (fs FeatureSet) ExtendedModel() uint8 {
ax, _, _, _ := fs.query(featureInfo)
_, em, _, _, _, _ := signatureSplit(ax)
return em
}
// ProcessorType is part of the processor signature.
//
//go:nosplit
func (fs FeatureSet) ProcessorType() uint8 {
ax, _, _, _ := fs.query(featureInfo)
_, _, pt, _, _, _ := signatureSplit(ax)
return pt
}
// Family is part of the processor signature.
//
//go:nosplit
func (fs FeatureSet) Family() uint8 {
ax, _, _, _ := fs.query(featureInfo)
_, _, _, f, _, _ := signatureSplit(ax)
return f
}
// Model is part of the processor signature.
//
//go:nosplit
func (fs FeatureSet) Model() uint8 {
ax, _, _, _ := fs.query(featureInfo)
_, _, _, _, m, _ := signatureSplit(ax)
return m
}
// SteppingID is part of the processor signature.
//
//go:nosplit
func (fs FeatureSet) SteppingID() uint8 {
ax, _, _, _ := fs.query(featureInfo)
_, _, _, _, _, sid := signatureSplit(ax)
return sid
}
// VirtualAddressBits returns the number of bits available for virtual
// addresses.
//
//go:nosplit
func (fs FeatureSet) VirtualAddressBits() uint32 {
ax, _, _, _ := fs.query(addressSizes)
return (ax >> 8) & 0xff
}
// PhysicalAddressBits returns the number of bits available for physical
// addresses.
//
//go:nosplit
func (fs FeatureSet) PhysicalAddressBits() uint32 {
ax, _, _, _ := fs.query(addressSizes)
return ax & 0xff
}
// CacheType describes the type of a cache, as returned in eax[4:0] for eax=4.
type CacheType uint8
const (
// cacheNull indicates that there are no more entries.
cacheNull CacheType = iota
// CacheData is a data cache.
CacheData
// CacheInstruction is an instruction cache.
CacheInstruction
// CacheUnified is a unified instruction and data cache.
CacheUnified
)
// Cache describes the parameters of a single cache on the system.
//
// This is returned by the Caches method on FeatureSet.
type Cache struct {
// Level is the hierarchical level of this cache (L1, L2, etc).
Level uint32
// Type is the type of cache.
Type CacheType
// FullyAssociative indicates that entries may be placed in any block.
FullyAssociative bool
// Partitions is the number of physical partitions in the cache.
Partitions uint32
// Ways is the number of ways of associativity in the cache.
Ways uint32
// Sets is the number of sets in the cache.
Sets uint32
// InvalidateHierarchical indicates that WBINVD/INVD from threads
// sharing this cache acts upon lower level caches for threads sharing
// this cache.
InvalidateHierarchical bool
// Inclusive indicates that this cache is inclusive of lower cache
// levels.
Inclusive bool
// DirectMapped indicates that this cache is directly mapped from
// address, rather than using a hash function.
DirectMapped bool
}
// Caches describes the caches on the CPU.
//
// Only supported on Intel; requires allocation.
func (fs FeatureSet) Caches() (caches []Cache) {
if !fs.Intel() {
return
}
// Check against the cache line, which should be consistent.
cacheLine := fs.CacheLine()
for i := uint32(0); ; i++ {
out := fs.Query(In{
Eax: uint32(intelDeterministicCacheParams),
Ecx: i,
})
t := CacheType(out.Eax & 0xf)
if t == cacheNull {
break
}
lineSize := (out.Ebx & 0xfff) + 1
if lineSize != cacheLine {
panic(fmt.Sprintf("Mismatched cache line size: %d vs %d", lineSize, cacheLine))
}
caches = append(caches, Cache{
Type: t,
Level: (out.Eax >> 5) & 0x7,
FullyAssociative: ((out.Eax >> 9) & 1) == 1,
Partitions: ((out.Ebx >> 12) & 0x3ff) + 1,
Ways: ((out.Ebx >> 22) & 0x3ff) + 1,
Sets: out.Ecx + 1,
InvalidateHierarchical: (out.Edx & 1) == 0,
Inclusive: ((out.Edx >> 1) & 1) == 1,
DirectMapped: ((out.Edx >> 2) & 1) == 0,
})
}
return
}
// CacheLine is the size of a cache line in bytes.
//
// All caches use the same line size. This is not enforced in the CPUID
// encoding, but is true on all known x86 processors.
//
//go:nosplit
func (fs FeatureSet) CacheLine() uint32 {
_, bx, _, _ := fs.query(featureInfo)
return 8 * (bx >> 8) & 0xff
}
// HasFeature tests whether or not a feature is in the given feature set.
//
// This function is safe to call from a nosplit context, as long as the
// FeatureSet does not have any masked features.
//
//go:nosplit
func (fs FeatureSet) HasFeature(feature Feature) bool {
return feature.check(fs)
}
// WriteCPUInfoTo is to generate a section of one cpu in /proc/cpuinfo. This is
// a minimal /proc/cpuinfo, it is missing some fields like "microcode" that are
// not always printed in Linux. The bogomips field is simply made up.
func (fs FeatureSet) WriteCPUInfoTo(cpu uint, w io.Writer) {
// Avoid many redunant calls here, since this can occasionally appear
// in the hot path. Read all basic information up front, see above.
ax, _, _, _ := fs.query(featureInfo)
ef, em, _, f, m, _ := signatureSplit(ax)
vendor := fs.VendorID()
fmt.Fprintf(w, "processor\t: %d\n", cpu)
fmt.Fprintf(w, "vendor_id\t: %s\n", string(vendor[:]))
fmt.Fprintf(w, "cpu family\t: %d\n", ((ef<<4)&0xff)|f)
fmt.Fprintf(w, "model\t\t: %d\n", ((em<<4)&0xff)|m)
fmt.Fprintf(w, "model name\t: %s\n", "unknown") // Unknown for now.
fmt.Fprintf(w, "stepping\t: %s\n", "unknown") // Unknown for now.
fmt.Fprintf(w, "cpu MHz\t\t: %.3f\n", cpuFreqMHz)
fmt.Fprintf(w, "fpu\t\t: yes\n")
fmt.Fprintf(w, "fpu_exception\t: yes\n")
fmt.Fprintf(w, "cpuid level\t: %d\n", uint32(xSaveInfo)) // Same as ax in vendorID.
fmt.Fprintf(w, "wp\t\t: yes\n")
fmt.Fprintf(w, "flags\t\t: %s\n", fs.FlagString())
fmt.Fprintf(w, "bogomips\t: %.02f\n", cpuFreqMHz) // It's bogus anyway.
fmt.Fprintf(w, "clflush size\t: %d\n", fs.CacheLine())
fmt.Fprintf(w, "cache_alignment\t: %d\n", fs.CacheLine())
fmt.Fprintf(w, "address sizes\t: %d bits physical, %d bits virtual\n", 46, 48)
fmt.Fprintf(w, "power management:\n") // This is always here, but can be blank.
fmt.Fprintf(w, "\n") // The /proc/cpuinfo file ends with an extra newline.
}
var (
authenticAMD = [12]byte{'A', 'u', 't', 'h', 'e', 'n', 't', 'i', 'c', 'A', 'M', 'D'}
genuineIntel = [12]byte{'G', 'e', 'n', 'u', 'i', 'n', 'e', 'I', 'n', 't', 'e', 'l'}
)
// AMD returns true if fs describes an AMD CPU.
//
//go:nosplit
func (fs FeatureSet) AMD() bool {
return fs.VendorID() == authenticAMD
}
// Intel returns true if fs describes an Intel CPU.
//
//go:nosplit
func (fs FeatureSet) Intel() bool {
return fs.VendorID() == genuineIntel
}
// Leaf 0 of xsaveinfo function returns the size for currently
// enabled xsave features in ebx, the maximum size if all valid
// features are saved with xsave in ecx, and valid XCR0 bits in
// edx:eax.
//
// If xSaveInfo isn't supported, cpuid will not fault but will
// return bogus values.
var maxXsaveSize = native(In{Eax: uint32(xSaveInfo)}).Ecx
// ExtendedStateSize returns the number of bytes needed to save the "extended
// state" for this processor and the boundary it must be aligned to. Extended
// state includes floating point registers, and other cpu state that's not
// associated with the normal task context.
//
// Note: We can save some space here with an optimization where we use a
// smaller chunk of memory depending on features that are actually enabled.
// Currently we just use the largest possible size for simplicity (which is
// about 2.5K worst case, with avx512).
//
//go:nosplit
func (fs FeatureSet) ExtendedStateSize() (size, align uint) {
if fs.UseXsave() {
return uint(maxXsaveSize), 64
}
// If we don't support xsave, we fall back to fxsave, which requires
// 512 bytes aligned to 16 bytes.
return 512, 16
}
// ValidXCR0Mask returns the valid bits in control register XCR0.
//
//go:nosplit
func (fs FeatureSet) ValidXCR0Mask() uint64 {
if !fs.HasFeature(X86FeatureXSAVE) {
return 0
}
ax, _, _, dx := fs.query(xSaveInfo)
return uint64(dx)<<32 | uint64(ax)
}
// UseXsave returns the choice of fp state saving instruction.
//
//go:nosplit
func (fs FeatureSet) UseXsave() bool {
return fs.HasFeature(X86FeatureXSAVE) && fs.HasFeature(X86FeatureOSXSAVE)
}
// UseXsaveopt returns true if 'fs' supports the "xsaveopt" instruction.
//
//go:nosplit
func (fs FeatureSet) UseXsaveopt() bool {
return fs.UseXsave() && fs.HasFeature(X86FeatureXSAVEOPT)
}
// archCheckHostCompatible checks for compatibility.
func (fs FeatureSet) archCheckHostCompatible(hfs FeatureSet) error {
// The size of a cache line must match, as it is critical to correctly
// utilizing CLFLUSH. Other cache properties are allowed to change, as
// they are not important to correctness.
fsCache := fs.CacheLine()
hostCache := hfs.CacheLine()
if fsCache != hostCache {
return &ErrIncompatible{
reason: fmt.Sprintf("CPU cache line size %d incompatible with host cache line size %d", fsCache, hostCache),
}
}
return nil
}
|