1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lisafs
import (
"fmt"
"math"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/cleanup"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/flipcall"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/unet"
)
const (
// fdsToCloseBatchSize is the number of closed FDs batched before an Close
// RPC is made to close them all. fdsToCloseBatchSize is immutable.
fdsToCloseBatchSize = 100
)
// Client helps manage a connection to the lisafs server and pass messages
// efficiently. There is a 1:1 mapping between a Connection and a Client.
type Client struct {
// sockComm is the main socket by which this connections is established.
// Communication over the socket is synchronized by sockMu.
sockMu sync.Mutex
sockComm *sockCommunicator
// channelsMu protects channels and availableChannels.
channelsMu sync.Mutex
// channels tracks all the channels.
channels []*channel
// availableChannels is a LIFO (stack) of channels available to be used.
availableChannels []*channel
// activeWg represents active channels.
activeWg sync.WaitGroup
// watchdogWg only holds the watchdog goroutine.
watchdogWg sync.WaitGroup
// supported caches information about which messages are supported. It is
// indexed by MID. An MID is supported if supported[MID] is true.
supported []bool
// maxMessageSize is the maximum payload length (in bytes) that can be sent.
// It is initialized on Mount and is immutable.
maxMessageSize uint32
// fdsToClose tracks the FDs to close. It caches the FDs no longer being used
// by the client and closes them in one shot. It is not preserved across
// checkpoint/restore as FDIDs are not preserved.
fdsMu sync.Mutex
fdsToClose []FDID
}
// NewClient creates a new client for communication with the server. It mounts
// the server and creates channels for fast IPC. NewClient takes ownership over
// the passed socket. On success, it returns the initialized client along with
// the root Inode.
func NewClient(sock *unet.Socket) (*Client, Inode, error) {
maxChans := maxChannels()
c := &Client{
sockComm: newSockComm(sock),
channels: make([]*channel, 0, maxChans),
availableChannels: make([]*channel, 0, maxChans),
maxMessageSize: 1 << 20, // 1 MB for now.
fdsToClose: make([]FDID, 0, fdsToCloseBatchSize),
}
// Start a goroutine to check socket health. This goroutine is also
// responsible for client cleanup.
c.watchdogWg.Add(1)
go c.watchdog()
// Clean everything up if anything fails.
cu := cleanup.Make(func() {
c.Close()
})
defer cu.Clean()
// Mount the server first. Assume Mount is supported so that we can make the
// Mount RPC below.
c.supported = make([]bool, Mount+1)
c.supported[Mount] = true
var (
mountReq MountReq
mountResp MountResp
)
if err := c.SndRcvMessage(Mount, uint32(mountReq.SizeBytes()), mountReq.MarshalBytes, mountResp.CheckedUnmarshal, nil, mountReq.String, mountResp.String); err != nil {
return nil, Inode{}, err
}
// Initialize client.
c.maxMessageSize = uint32(mountResp.MaxMessageSize)
var maxSuppMID MID
for _, suppMID := range mountResp.SupportedMs {
if suppMID > maxSuppMID {
maxSuppMID = suppMID
}
}
c.supported = make([]bool, maxSuppMID+1)
for _, suppMID := range mountResp.SupportedMs {
c.supported[suppMID] = true
}
// Create channels parallely so that channels can be used to create more
// channels and costly initialization like flipcall.Endpoint.Connect can
// proceed parallely.
var channelsWg sync.WaitGroup
for i := 0; i < maxChans; i++ {
channelsWg.Add(1)
go func() {
defer channelsWg.Done()
ch, err := c.createChannel()
if err != nil {
if err == unix.ENOMEM {
log.Debugf("channel creation failed because server hit max channels limit")
} else {
log.Warningf("channel creation failed: %v", err)
}
return
}
c.channelsMu.Lock()
c.channels = append(c.channels, ch)
c.availableChannels = append(c.availableChannels, ch)
c.channelsMu.Unlock()
}()
}
channelsWg.Wait()
// Check that atleast 1 channel is created. This is not required by lisafs
// protocol. It exists to flag server side issues in channel creation.
c.channelsMu.Lock()
numChannels := len(c.channels)
c.channelsMu.Unlock()
if maxChans > 0 && numChannels == 0 {
log.Warningf("all channel RPCs failed")
return nil, Inode{}, unix.ENOMEM
}
cu.Release()
return c, mountResp.Root, nil
}
func (c *Client) watchdog() {
defer c.watchdogWg.Done()
events := []unix.PollFd{
{
Fd: int32(c.sockComm.FD()),
Events: unix.POLLHUP | unix.POLLRDHUP,
},
}
// Wait for a shutdown event.
for {
n, err := unix.Ppoll(events, nil, nil)
if err == unix.EINTR || err == unix.EAGAIN {
continue
}
if err != nil {
log.Warningf("lisafs.Client.watch(): %v", err)
} else if n != 1 {
log.Warningf("lisafs.Client.watch(): got %d events, wanted 1", n)
}
break
}
// Shutdown all active channels and wait for them to complete.
c.shutdownActiveChans()
c.activeWg.Wait()
// Close all channels.
c.channelsMu.Lock()
for _, ch := range c.channels {
ch.destroy()
}
c.channelsMu.Unlock()
// Close main socket.
c.sockComm.destroy()
}
func (c *Client) shutdownActiveChans() {
c.channelsMu.Lock()
defer c.channelsMu.Unlock()
availableChans := make(map[*channel]bool)
for _, ch := range c.availableChannels {
availableChans[ch] = true
}
for _, ch := range c.channels {
// A channel that is not available is active.
if _, ok := availableChans[ch]; !ok {
log.Debugf("shutting down active channel@%p...", ch)
ch.shutdown()
}
}
// Prevent channels from becoming available and serving new requests.
c.availableChannels = nil
}
// Close shuts down the main socket and waits for the watchdog to clean up.
func (c *Client) Close() {
// This shutdown has no effect if the watchdog has already fired and closed
// the main socket.
c.sockComm.shutdown()
c.watchdogWg.Wait()
}
func (c *Client) createChannel() (*channel, error) {
var (
chanReq ChannelReq
chanResp ChannelResp
)
var fds [2]int
if err := c.SndRcvMessage(Channel, uint32(chanReq.SizeBytes()), chanReq.MarshalBytes, chanResp.CheckedUnmarshal, fds[:], chanReq.String, chanResp.String); err != nil {
return nil, err
}
if fds[0] < 0 || fds[1] < 0 {
closeFDs(fds[:])
return nil, fmt.Errorf("insufficient FDs provided in Channel response: %v", fds)
}
// Lets create the channel.
defer closeFDs(fds[:1]) // The data FD is not needed after this.
desc := flipcall.PacketWindowDescriptor{
FD: fds[0],
Offset: chanResp.dataOffset,
Length: int(chanResp.dataLength),
}
ch := &channel{}
if err := ch.data.Init(flipcall.ClientSide, desc); err != nil {
closeFDs(fds[1:])
return nil, err
}
ch.fdChan.Init(fds[1]) // fdChan now owns this FD.
// Only a connected channel is usable.
if err := ch.data.Connect(); err != nil {
ch.destroy()
return nil, err
}
return ch, nil
}
// IsSupported returns true if this connection supports the passed message.
func (c *Client) IsSupported(m MID) bool {
return int(m) < len(c.supported) && c.supported[m]
}
// CloseFD either queues the passed FD to be closed or makes a batch
// RPC to close all the accumulated FDs-to-close. If flush is true, the RPC
// is made immediately.
func (c *Client) CloseFD(ctx context.Context, fd FDID, flush bool) {
c.fdsMu.Lock()
c.fdsToClose = append(c.fdsToClose, fd)
if !flush && len(c.fdsToClose) < fdsToCloseBatchSize {
// We can continue batching.
c.fdsMu.Unlock()
return
}
// Flush the cache. We should not hold fdsMu while making an RPC, so be sure
// to copy the fdsToClose to another buffer before unlocking fdsMu.
var toCloseArr [fdsToCloseBatchSize]FDID
toClose := toCloseArr[:len(c.fdsToClose)]
copy(toClose, c.fdsToClose)
// Clear fdsToClose so other FDIDs can be appended.
c.fdsToClose = c.fdsToClose[:0]
c.fdsMu.Unlock()
req := CloseReq{FDs: toClose}
var resp CloseResp
ctx.UninterruptibleSleepStart(false)
err := c.SndRcvMessage(Close, uint32(req.SizeBytes()), req.MarshalBytes, resp.CheckedUnmarshal, nil, req.String, resp.String)
ctx.UninterruptibleSleepFinish(false)
if err != nil {
log.Warningf("lisafs: batch closing FDs returned error: %v", err)
}
}
// SyncFDs makes a Fsync RPC to sync multiple FDs.
func (c *Client) SyncFDs(ctx context.Context, fds []FDID) error {
if len(fds) == 0 {
return nil
}
req := FsyncReq{FDs: fds}
var resp FsyncResp
ctx.UninterruptibleSleepStart(false)
err := c.SndRcvMessage(FSync, uint32(req.SizeBytes()), req.MarshalBytes, resp.CheckedUnmarshal, nil, req.String, resp.String)
ctx.UninterruptibleSleepFinish(false)
return err
}
// SndRcvMessage invokes reqMarshal to marshal the request onto the payload
// buffer, wakes up the server to process the request, waits for the response
// and invokes respUnmarshal with the response payload. respFDs is populated
// with the received FDs, extra fields are set to -1.
//
// See messages.go to understand why function arguments are used instead of
// combining these functions into an interface type.
//
// Precondition: function arguments must be non-nil.
func (c *Client) SndRcvMessage(m MID, payloadLen uint32, reqMarshal marshalFunc, respUnmarshal unmarshalFunc, respFDs []int, reqString debugStringer, respString debugStringer) error {
if !c.IsSupported(m) {
return unix.EOPNOTSUPP
}
if payloadLen > c.maxMessageSize {
log.Warningf("message %d has payload which is too large: %d bytes", m, payloadLen)
return unix.EIO
}
wantFDs := len(respFDs)
if wantFDs > math.MaxUint8 {
log.Warningf("want too many FDs: %d", wantFDs)
return unix.EINVAL
}
// Acquire a communicator.
comm := c.acquireCommunicator()
defer c.releaseCommunicator(comm)
debugf("send", comm, reqString)
// Marshal the request into comm's payload buffer and make the RPC.
reqMarshal(comm.PayloadBuf(payloadLen))
respM, respPayloadLen, err := comm.SndRcvMessage(m, payloadLen, uint8(wantFDs))
// Handle FD donation.
rcvFDs := comm.ReleaseFDs()
if numRcvFDs := len(rcvFDs); numRcvFDs+wantFDs > 0 {
// releasedFDs is memory owned by comm which can not be returned to caller.
// Copy it into the caller's buffer.
numFDCopied := copy(respFDs, rcvFDs)
if numFDCopied < numRcvFDs {
log.Warningf("%d unexpected FDs were donated by the server, wanted", numRcvFDs-numFDCopied, wantFDs)
closeFDs(rcvFDs[numFDCopied:])
}
if numFDCopied < wantFDs {
for i := numFDCopied; i < wantFDs; i++ {
respFDs[i] = -1
}
}
}
// Error cases.
if err != nil {
closeFDs(respFDs)
return err
}
if respPayloadLen > c.maxMessageSize {
log.Warningf("server response for message %d is too large: %d bytes", respM, respPayloadLen)
closeFDs(respFDs)
return unix.EIO
}
if respM == Error {
closeFDs(respFDs)
var resp ErrorResp
resp.UnmarshalUnsafe(comm.PayloadBuf(respPayloadLen))
debugf("recv", comm, resp.String)
return unix.Errno(resp.errno)
}
if respM != m {
closeFDs(respFDs)
log.Warningf("sent %d message but got %d in response", m, respM)
return unix.EINVAL
}
// Success. The payload must be unmarshalled *before* comm is released.
if _, ok := respUnmarshal(comm.PayloadBuf(respPayloadLen)); !ok {
log.Warningf("server response unmarshalling for %d message failed", respM)
return unix.EIO
}
debugf("recv", comm, respString)
return nil
}
func debugf(action string, comm Communicator, debugMsg debugStringer) {
// Replicate the log.IsLogging(log.Debug) check to avoid having to call
// debugMsg() on the hot path.
if log.IsLogging(log.Debug) {
log.Debugf("%s [%s] %s", action, comm, debugMsg())
}
}
// Postcondition: releaseCommunicator() must be called on the returned value.
func (c *Client) acquireCommunicator() Communicator {
// Prefer using channel over socket because:
// - Channel uses a shared memory region for passing messages. IO from shared
// memory is faster and does not involve making a syscall.
// - No intermediate buffer allocation needed. With a channel, the message
// can be directly pasted into the shared memory region.
if ch := c.getChannel(); ch != nil {
return ch
}
c.sockMu.Lock()
return c.sockComm
}
// Precondition: comm must have been acquired via acquireCommunicator().
func (c *Client) releaseCommunicator(comm Communicator) {
switch t := comm.(type) {
case *sockCommunicator:
c.sockMu.Unlock() // +checklocksforce: locked in acquireCommunicator().
case *channel:
c.releaseChannel(t)
default:
panic(fmt.Sprintf("unknown communicator type %T", t))
}
}
// getChannel pops a channel from the available channels stack. The caller must
// release the channel after use.
func (c *Client) getChannel() *channel {
c.channelsMu.Lock()
defer c.channelsMu.Unlock()
if len(c.availableChannels) == 0 {
return nil
}
idx := len(c.availableChannels) - 1
ch := c.availableChannels[idx]
c.availableChannels = c.availableChannels[:idx]
c.activeWg.Add(1)
return ch
}
// releaseChannel pushes the passed channel onto the available channel stack if
// reinsert is true.
func (c *Client) releaseChannel(ch *channel) {
c.channelsMu.Lock()
defer c.channelsMu.Unlock()
// If availableChannels is nil, then watchdog has fired and the client is
// shutting down. So don't make this channel available again.
if !ch.dead && c.availableChannels != nil {
c.availableChannels = append(c.availableChannels, ch)
}
c.activeWg.Done()
}
|