1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lisafs
import (
"path"
"path/filepath"
"runtime/debug"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/flipcall"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/p9"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/unet"
)
// Connection represents a connection between a mount point in the client and a
// mount point in the server. It is owned by the server on which it was started
// and facilitates communication with the client mount.
//
// Each connection is set up using a unix domain socket. One end is owned by
// the server and the other end is owned by the client. The connection may
// spawn additional comunicational channels for the same mount for increased
// RPC concurrency.
//
// Reference model:
// - When any FD is created, the connection takes a ref on it which represents
// the client's ref on the FD.
// - The client can drop its ref via the Close RPC which will in turn make the
// connection drop its ref.
type Connection struct {
// server is the server on which this connection was created. It is immutably
// associated with it for its entire lifetime.
server *Server
// mountPath is the path to a file inside the server that is served to this
// connection as its root FD. IOW, this connection is mounted at this path.
// mountPath is trusted because it is configured by the server (trusted) as
// per the user's sandbox configuration. mountPath is immutable.
mountPath string
// maxMessageSize is the cached value of server.impl.MaxMessageSize().
maxMessageSize uint32
// readonly indicates if this connection is readonly. All write operations
// will fail with EROFS.
readonly bool
// sockComm is the main socket by which this connections is established.
sockComm *sockCommunicator
// channelsMu protects channels.
channelsMu sync.Mutex
// channels keeps track of all open channels.
channels []*channel
// activeWg represents active channels.
activeWg sync.WaitGroup
// reqGate counts requests that are still being handled.
reqGate sync.Gate
// channelAlloc is used to allocate memory for channels.
channelAlloc *flipcall.PacketWindowAllocator
fdsMu sync.RWMutex
// fds keeps tracks of open FDs on this server. It is protected by fdsMu.
fds map[FDID]genericFD
// nextFDID is the next available FDID. It is protected by fdsMu.
nextFDID FDID
}
// CreateConnection initializes a new connection which will be mounted at
// mountPath. The connection must be started separately.
func (s *Server) CreateConnection(sock *unet.Socket, mountPath string, readonly bool) (*Connection, error) {
mountPath = path.Clean(mountPath)
if !filepath.IsAbs(mountPath) {
log.Warningf("mountPath %q is not absolute", mountPath)
return nil, unix.EINVAL
}
c := &Connection{
sockComm: newSockComm(sock),
server: s,
maxMessageSize: s.impl.MaxMessageSize(),
mountPath: mountPath,
readonly: readonly,
channels: make([]*channel, 0, maxChannels()),
fds: make(map[FDID]genericFD),
nextFDID: InvalidFDID + 1,
}
alloc, err := flipcall.NewPacketWindowAllocator()
if err != nil {
return nil, err
}
c.channelAlloc = alloc
return c, nil
}
// ServerImpl returns the associated server implementation.
func (c *Connection) ServerImpl() ServerImpl {
return c.server.impl
}
// Run defines the lifecycle of a connection.
func (c *Connection) Run() {
defer c.close()
// Start handling requests on this connection.
for {
m, payloadLen, err := c.sockComm.rcvMsg(0 /* wantFDs */)
if err != nil {
log.Debugf("sock read failed, closing connection: %v", err)
return
}
respM, respPayloadLen, respFDs := c.handleMsg(c.sockComm, m, payloadLen)
err = c.sockComm.sndPrepopulatedMsg(respM, respPayloadLen, respFDs)
closeFDs(respFDs)
if err != nil {
log.Debugf("sock write failed, closing connection: %v", err)
return
}
}
}
// service starts servicing the passed channel until the channel is shutdown.
// This is a blocking method and hence must be called in a separate goroutine.
func (c *Connection) service(ch *channel) error {
rcvDataLen, err := ch.data.RecvFirst()
if err != nil {
return err
}
for rcvDataLen > 0 {
m, payloadLen, err := ch.rcvMsg(rcvDataLen)
if err != nil {
return err
}
respM, respPayloadLen, respFDs := c.handleMsg(ch, m, payloadLen)
numFDs := ch.sendFDs(respFDs)
closeFDs(respFDs)
ch.marshalHdr(respM, numFDs)
rcvDataLen, err = ch.data.SendRecv(respPayloadLen + chanHeaderLen)
if err != nil {
return err
}
}
return nil
}
func (c *Connection) respondError(comm Communicator, err unix.Errno) (MID, uint32, []int) {
resp := &ErrorResp{errno: uint32(err)}
respLen := uint32(resp.SizeBytes())
resp.MarshalUnsafe(comm.PayloadBuf(respLen))
return Error, respLen, nil
}
func (c *Connection) handleMsg(comm Communicator, m MID, payloadLen uint32) (retM MID, retPayloadLen uint32, retFDs []int) {
if payloadLen > c.maxMessageSize {
log.Warningf("received payload is too large: %d bytes", payloadLen)
return c.respondError(comm, unix.EIO)
}
if !c.reqGate.Enter() {
// c.close() has been called; the connection is shutting down.
return c.respondError(comm, unix.ECONNRESET)
}
defer func() {
c.reqGate.Leave()
// Don't allow a panic to propagate.
if err := recover(); err != nil {
// Include a useful log message.
log.Warningf("panic in handler: %v\n%s", err, debug.Stack())
// Wrap in an EREMOTEIO error; we don't really have a better way to
// describe this kind of error. EREMOTEIO is appropriate for a generic
// failed RPC message.
retM, retPayloadLen, retFDs = c.respondError(comm, unix.EREMOTEIO)
}
}()
// Check if the message is supported for forward compatibility.
if int(m) >= len(c.server.handlers) || c.server.handlers[m] == nil {
log.Warningf("received request which is not supported by the server, MID = %d", m)
return c.respondError(comm, unix.EOPNOTSUPP)
}
// Try handling the request.
respPayloadLen, err := c.server.handlers[m](c, comm, payloadLen)
fds := comm.ReleaseFDs()
if err != nil {
closeFDs(fds)
return c.respondError(comm, p9.ExtractErrno(err))
}
if respPayloadLen > c.maxMessageSize {
log.Warningf("handler for message %d responded with payload which is too large: %d bytes", m, respPayloadLen)
closeFDs(fds)
return c.respondError(comm, unix.EIO)
}
return m, respPayloadLen, fds
}
func (c *Connection) close() {
// Wait for completion of all inflight requests. This is mostly so that if
// a request is stuck, the sandbox supervisor has the opportunity to kill
// us with SIGABRT to get a stack dump of the offending handler.
c.reqGate.Close()
// Shutdown and clean up channels.
c.channelsMu.Lock()
for _, ch := range c.channels {
ch.shutdown()
}
c.activeWg.Wait()
for _, ch := range c.channels {
ch.destroy()
}
// This is to prevent additional channels from being created.
c.channels = nil
c.channelsMu.Unlock()
// Free the channel memory.
if c.channelAlloc != nil {
c.channelAlloc.Destroy()
}
// Ensure the connection is closed.
c.sockComm.destroy()
// Cleanup all FDs.
c.fdsMu.Lock()
defer c.fdsMu.Unlock()
for fdid := range c.fds {
fd := c.stopTrackingFD(fdid)
fd.DecRef(nil) // Drop the ref held by c.
}
}
// Postcondition: The caller gains a ref on the FD on success.
func (c *Connection) lookupFD(id FDID) (genericFD, error) {
c.fdsMu.RLock()
defer c.fdsMu.RUnlock()
fd, ok := c.fds[id]
if !ok {
return nil, unix.EBADF
}
fd.IncRef()
return fd, nil
}
// lookupControlFD retrieves the control FD identified by id on this
// connection. On success, the caller gains a ref on the FD.
func (c *Connection) lookupControlFD(id FDID) (*ControlFD, error) {
fd, err := c.lookupFD(id)
if err != nil {
return nil, err
}
cfd, ok := fd.(*ControlFD)
if !ok {
fd.DecRef(nil)
return nil, unix.EINVAL
}
return cfd, nil
}
// lookupOpenFD retrieves the open FD identified by id on this
// connection. On success, the caller gains a ref on the FD.
func (c *Connection) lookupOpenFD(id FDID) (*OpenFD, error) {
fd, err := c.lookupFD(id)
if err != nil {
return nil, err
}
ofd, ok := fd.(*OpenFD)
if !ok {
fd.DecRef(nil)
return nil, unix.EINVAL
}
return ofd, nil
}
// lookupBoundSocketFD retrieves the boundSockedFD identified by id on this
// connection. On success, the caller gains a ref on the FD.
func (c *Connection) lookupBoundSocketFD(id FDID) (*BoundSocketFD, error) {
fd, err := c.lookupFD(id)
if err != nil {
return nil, err
}
bsfd, ok := fd.(*BoundSocketFD)
if !ok {
fd.DecRef(nil)
return nil, unix.EINVAL
}
return bsfd, nil
}
// insertFD inserts the passed fd into the internal datastructure to track FDs.
// The caller must hold a ref on fd which is transferred to the connection.
func (c *Connection) insertFD(fd genericFD) FDID {
c.fdsMu.Lock()
defer c.fdsMu.Unlock()
res := c.nextFDID
c.nextFDID++
if c.nextFDID < res {
panic("ran out of FDIDs")
}
c.fds[res] = fd
return res
}
// removeFD makes c stop tracking the passed FDID and drops its ref on it.
func (c *Connection) removeFD(id FDID) {
c.fdsMu.Lock()
fd := c.stopTrackingFD(id)
c.fdsMu.Unlock()
if fd != nil {
// Drop the ref held by c. This can take arbitrarily long. So do not hold
// c.fdsMu while calling it.
fd.DecRef(nil)
}
}
// removeControlFDLocked is the same as removeFD with added preconditions.
//
// Preconditions:
// - server's rename mutex must at least be read locked.
// - id must be pointing to a control FD.
func (c *Connection) removeControlFDLocked(id FDID) {
c.fdsMu.Lock()
fd := c.stopTrackingFD(id)
c.fdsMu.Unlock()
if fd != nil {
// Drop the ref held by c. This can take arbitrarily long. So do not hold
// c.fdsMu while calling it.
fd.(*ControlFD).decRefLocked()
}
}
// stopTrackingFD makes c stop tracking the passed FDID. Note that the caller
// must drop ref on the returned fd (preferably without holding c.fdsMu).
//
// Precondition: c.fdsMu is locked.
func (c *Connection) stopTrackingFD(id FDID) genericFD {
fd := c.fds[id]
if fd == nil {
log.Warningf("removeFDLocked called on non-existent FDID %d", id)
return nil
}
delete(c.fds, id)
return fd
}
|