1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "funcdata.h"
#include "textflag.h"
// fxrstor loads floating point state.
//
// The code corresponds to:
//
// fxrstor64 (%rbx)
//
TEXT ·fxrstor(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), BX
MOVL $0xffffffff, AX
MOVL $0xffffffff, DX
BYTE $0x48; BYTE $0x0f; BYTE $0xae; BYTE $0x0b;
RET
// xrstor loads floating point state.
//
// The code corresponds to:
//
// xrstor (%rdi)
//
TEXT ·xrstor(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), DI
MOVL $0xffffffff, AX
MOVL $0xffffffff, DX
BYTE $0x48; BYTE $0x0f; BYTE $0xae; BYTE $0x2f;
RET
// fxsave saves floating point state.
//
// The code corresponds to:
//
// fxsave64 (%rbx)
//
TEXT ·fxsave(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), BX
MOVL $0xffffffff, AX
MOVL $0xffffffff, DX
BYTE $0x48; BYTE $0x0f; BYTE $0xae; BYTE $0x03;
RET
// xsave saves floating point state.
//
// The code corresponds to:
//
// xsave (%rdi)
//
TEXT ·xsave(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), DI
MOVL $0xffffffff, AX
MOVL $0xffffffff, DX
BYTE $0x48; BYTE $0x0f; BYTE $0xae; BYTE $0x27;
RET
// xsaveopt saves floating point state.
//
// The code corresponds to:
//
// xsaveopt (%rdi)
//
TEXT ·xsaveopt(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), DI
MOVL $0xffffffff, AX
MOVL $0xffffffff, DX
BYTE $0x48; BYTE $0x0f; BYTE $0xae; BYTE $0x37;
RET
// writeFS writes to the FS base.
//
// This is written in assembly because it must be safe to call before the Go
// environment is set up. See comment on start().
//
// Preconditions: must be running in the lower address space, as it accesses
// global data.
TEXT ·writeFS(SB),NOSPLIT,$8-8
MOVQ addr+0(FP), AX
CMPB ·hasFSGSBASE(SB), $1
JNE msr
PUSHQ AX
CALL ·wrfsbase(SB)
POPQ AX
RET
msr:
PUSHQ AX
CALL ·wrfsmsr(SB)
POPQ AX
RET
// wrfsbase writes to the FS base.
//
// The code corresponds to:
//
// wrfsbase %rax
//
TEXT ·wrfsbase(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), AX
BYTE $0xf3; BYTE $0x48; BYTE $0x0f; BYTE $0xae; BYTE $0xd0;
RET
// wrfsmsr writes to the FSBASE MSR.
//
// The code corresponds to:
//
// wrmsr (writes EDX:EAX to the MSR in ECX)
//
TEXT ·wrfsmsr(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), AX
MOVQ AX, DX
SHRQ $32, DX
MOVQ $0xc0000100, CX // MSR_FS_BASE
BYTE $0x0f; BYTE $0x30;
RET
// writeGS writes to the GS base.
//
// This is written in assembly because it must be callable from assembly (ABI0)
// without an intermediate transition to ABIInternal.
//
// Preconditions: must be running in the lower address space, as it accesses
// global data.
TEXT ·writeGS(SB),NOSPLIT,$8-8
MOVQ addr+0(FP), AX
CMPB ·hasFSGSBASE(SB), $1
JNE msr
PUSHQ AX
CALL ·wrgsbase(SB)
POPQ AX
RET
msr:
PUSHQ AX
CALL ·wrgsmsr(SB)
POPQ AX
RET
// wrgsbase writes to the GS base.
//
// The code corresponds to:
//
// wrgsbase %rax
//
TEXT ·wrgsbase(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), AX
BYTE $0xf3; BYTE $0x48; BYTE $0x0f; BYTE $0xae; BYTE $0xd8;
RET
// wrgsmsr writes to the GSBASE MSR.
//
// See wrfsmsr.
TEXT ·wrgsmsr(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), AX
MOVQ AX, DX
SHRQ $32, DX
MOVQ $0xc0000101, CX // MSR_GS_BASE
BYTE $0x0f; BYTE $0x30; // WRMSR
RET
// readCR2 reads the current CR2 value.
//
// The code corresponds to:
//
// mov %cr2, %rax
//
TEXT ·readCR2(SB),NOSPLIT,$0-8
BYTE $0x0f; BYTE $0x20; BYTE $0xd0;
MOVQ AX, ret+0(FP)
RET
// fninit initializes the floating point unit.
//
// The code corresponds to:
//
// fninit
TEXT ·fninit(SB),NOSPLIT,$0
BYTE $0xdb; BYTE $0xe3;
RET
// xsetbv writes to an extended control register.
//
// The code corresponds to:
//
// xsetbv
//
TEXT ·xsetbv(SB),NOSPLIT,$0-16
MOVL reg+0(FP), CX
MOVL value+8(FP), AX
MOVL value+12(FP), DX
BYTE $0x0f; BYTE $0x01; BYTE $0xd1;
RET
// xgetbv reads an extended control register.
//
// The code corresponds to:
//
// xgetbv
//
TEXT ·xgetbv(SB),NOSPLIT,$0-16
MOVL reg+0(FP), CX
BYTE $0x0f; BYTE $0x01; BYTE $0xd0;
MOVL AX, ret+8(FP)
MOVL DX, ret+12(FP)
RET
// wrmsr writes to a control register.
//
// The code corresponds to:
//
// wrmsr
//
TEXT ·wrmsr(SB),NOSPLIT,$0-16
MOVL reg+0(FP), CX
MOVL value+8(FP), AX
MOVL value+12(FP), DX
BYTE $0x0f; BYTE $0x30;
RET
// rdmsr reads a control register.
//
// The code corresponds to:
//
// rdmsr
//
TEXT ·rdmsr(SB),NOSPLIT,$0-16
MOVL reg+0(FP), CX
BYTE $0x0f; BYTE $0x32;
MOVL AX, ret+8(FP)
MOVL DX, ret+12(FP)
RET
// stmxcsr reads the MXCSR control and status register.
TEXT ·stmxcsr(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), SI
STMXCSR (SI)
RET
// ldmxcsr writes to the MXCSR control and status register.
TEXT ·ldmxcsr(SB),NOSPLIT,$0-8
MOVQ addr+0(FP), SI
LDMXCSR (SI)
RET
|