1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build 386 || amd64
// +build 386 amd64
package ring0
// Useful bits.
const (
_CR0_PE = 1 << 0
_CR0_ET = 1 << 4
_CR0_NE = 1 << 5
_CR0_AM = 1 << 18
_CR0_PG = 1 << 31
_CR4_PSE = 1 << 4
_CR4_PAE = 1 << 5
_CR4_PGE = 1 << 7
_CR4_OSFXSR = 1 << 9
_CR4_OSXMMEXCPT = 1 << 10
_CR4_FSGSBASE = 1 << 16
_CR4_PCIDE = 1 << 17
_CR4_OSXSAVE = 1 << 18
_CR4_SMEP = 1 << 20
_CR4_SMAP = 1 << 21
_RFLAGS_AC = 1 << 18
_RFLAGS_NT = 1 << 14
_RFLAGS_IOPL0 = 1 << 12
_RFLAGS_IOPL1 = 1 << 13
_RFLAGS_IOPL = _RFLAGS_IOPL0 | _RFLAGS_IOPL1
_RFLAGS_DF = 1 << 10
_RFLAGS_IF = 1 << 9
_RFLAGS_STEP = 1 << 8
_RFLAGS_RESERVED = 1 << 1
_EFER_SCE = 0x001
_EFER_LME = 0x100
_EFER_LMA = 0x400
_EFER_NX = 0x800
_MSR_STAR = 0xc0000081
_MSR_LSTAR = 0xc0000082
_MSR_CSTAR = 0xc0000083
_MSR_SYSCALL_MASK = 0xc0000084
_MSR_PLATFORM_INFO = 0xce
_MSR_MISC_FEATURES = 0x140
_PLATFORM_INFO_CPUID_FAULT = 1 << 31
_MISC_FEATURE_CPUID_TRAP = 0x1
)
const (
// KernelFlagsSet should always be set in the kernel.
KernelFlagsSet = _RFLAGS_RESERVED
// UserFlagsSet are always set in userspace.
//
// _RFLAGS_IOPL is a set of two bits and it shows the I/O privilege
// level. The Current Privilege Level (CPL) of the task must be less
// than or equal to the IOPL in order for the task or program to access
// I/O ports.
//
// Here, _RFLAGS_IOPL0 is used only to determine whether the task is
// running in the kernel or userspace mode. In the user mode, the CPL is
// always 3 and it doesn't matter what IOPL is set if it is bellow CPL.
//
// We need to have one bit which will be always different in user and
// kernel modes. And we have to remember that even though we have
// KernelFlagsClear, we still can see some of these flags in the kernel
// mode. This can happen when the goruntime switches on a goroutine
// which has been saved in the host mode. On restore, the popf
// instruction is used to restore flags and this means that all flags
// what the goroutine has in the host mode will be restored in the
// kernel mode.
//
// _RFLAGS_IOPL0 is never set in host and kernel modes and we always set
// it in the user mode. So if this flag is set, the task is running in
// the user mode and if it isn't set, the task is running in the kernel
// mode.
UserFlagsSet = _RFLAGS_RESERVED | _RFLAGS_IF | _RFLAGS_IOPL0
// KernelFlagsClear should always be clear in the kernel.
KernelFlagsClear = _RFLAGS_STEP | _RFLAGS_IF | _RFLAGS_IOPL | _RFLAGS_AC | _RFLAGS_NT
// UserFlagsClear are always cleared in userspace.
UserFlagsClear = _RFLAGS_NT | _RFLAGS_IOPL1
)
// IsKernelFlags returns true if rflags coresponds to the kernel mode.
//
//go:nosplit
func IsKernelFlags(rflags uint64) bool {
return rflags&_RFLAGS_IOPL0 == 0
}
// Vector is an exception vector.
type Vector uintptr
// Exception vectors.
const (
DivideByZero Vector = iota
Debug
NMI
Breakpoint
Overflow
BoundRangeExceeded
InvalidOpcode
DeviceNotAvailable
DoubleFault
CoprocessorSegmentOverrun
InvalidTSS
SegmentNotPresent
StackSegmentFault
GeneralProtectionFault
PageFault
_
X87FloatingPointException
AlignmentCheck
MachineCheck
SIMDFloatingPointException
VirtualizationException
SecurityException = 0x1e
SyscallInt80 = 0x80
_NR_INTERRUPTS = 0x100
)
// System call vectors.
const (
Syscall Vector = _NR_INTERRUPTS
)
// Selector is a segment Selector.
type Selector uint16
// SegmentDescriptor is a segment descriptor.
type SegmentDescriptor struct {
bits [2]uint32
}
// descriptorTable is a collection of descriptors.
type descriptorTable [32]SegmentDescriptor
// SegmentDescriptorFlags are typed flags within a descriptor.
type SegmentDescriptorFlags uint32
// SegmentDescriptorFlag declarations.
const (
SegmentDescriptorAccess SegmentDescriptorFlags = 1 << 8 // Access bit (always set).
SegmentDescriptorWrite = 1 << 9 // Write permission.
SegmentDescriptorExpandDown = 1 << 10 // Grows down, not used.
SegmentDescriptorExecute = 1 << 11 // Execute permission.
SegmentDescriptorSystem = 1 << 12 // Zero => system, 1 => user code/data.
SegmentDescriptorPresent = 1 << 15 // Present.
SegmentDescriptorAVL = 1 << 20 // Available.
SegmentDescriptorLong = 1 << 21 // Long mode.
SegmentDescriptorDB = 1 << 22 // 16 or 32-bit.
SegmentDescriptorG = 1 << 23 // Granularity: page or byte.
)
// Base returns the descriptor's base linear address.
func (d *SegmentDescriptor) Base() uint32 {
return d.bits[1]&0xFF000000 | (d.bits[1]&0x000000FF)<<16 | d.bits[0]>>16
}
// Limit returns the descriptor size.
func (d *SegmentDescriptor) Limit() uint32 {
l := d.bits[0]&0xFFFF | d.bits[1]&0xF0000
if d.bits[1]&uint32(SegmentDescriptorG) != 0 {
l <<= 12
l |= 0xFFF
}
return l
}
// Flags returns descriptor flags.
func (d *SegmentDescriptor) Flags() SegmentDescriptorFlags {
return SegmentDescriptorFlags(d.bits[1] & 0x00F09F00)
}
// DPL returns the descriptor privilege level.
func (d *SegmentDescriptor) DPL() int {
return int((d.bits[1] >> 13) & 3)
}
func (d *SegmentDescriptor) setNull() {
d.bits[0] = 0
d.bits[1] = 0
}
func (d *SegmentDescriptor) set(base, limit uint32, dpl int, flags SegmentDescriptorFlags) {
flags |= SegmentDescriptorPresent
if limit>>12 != 0 {
limit >>= 12
flags |= SegmentDescriptorG
}
d.bits[0] = base<<16 | limit&0xFFFF
d.bits[1] = base&0xFF000000 | (base>>16)&0xFF | limit&0x000F0000 | uint32(flags) | uint32(dpl)<<13
}
func (d *SegmentDescriptor) setCode32(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorDB|
SegmentDescriptorExecute|
SegmentDescriptorSystem)
}
func (d *SegmentDescriptor) setCode64(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorG|
SegmentDescriptorLong|
SegmentDescriptorExecute|
SegmentDescriptorSystem)
}
func (d *SegmentDescriptor) setData(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorWrite|
SegmentDescriptorSystem)
}
// setHi is only used for the TSS segment, which is magically 64-bits.
func (d *SegmentDescriptor) setHi(base uint32) {
d.bits[0] = base
d.bits[1] = 0
}
// Gate64 is a 64-bit task, trap, or interrupt gate.
type Gate64 struct {
bits [4]uint32
}
// idt64 is a 64-bit interrupt descriptor table.
type idt64 [_NR_INTERRUPTS]Gate64
func (g *Gate64) setInterrupt(cs Selector, rip uint64, dpl int, ist int) {
g.bits[0] = uint32(cs)<<16 | uint32(rip)&0xFFFF
g.bits[1] = uint32(rip)&0xFFFF0000 | SegmentDescriptorPresent | uint32(dpl)<<13 | 14<<8 | uint32(ist)&0x7
g.bits[2] = uint32(rip >> 32)
}
func (g *Gate64) setTrap(cs Selector, rip uint64, dpl int, ist int) {
g.setInterrupt(cs, rip, dpl, ist)
g.bits[1] |= 1 << 8
}
// TaskState64 is a 64-bit task state structure.
type TaskState64 struct {
_ uint32
rsp0Lo, rsp0Hi uint32
rsp1Lo, rsp1Hi uint32
rsp2Lo, rsp2Hi uint32
_ [2]uint32
ist1Lo, ist1Hi uint32
ist2Lo, ist2Hi uint32
ist3Lo, ist3Hi uint32
ist4Lo, ist4Hi uint32
ist5Lo, ist5Hi uint32
ist6Lo, ist6Hi uint32
ist7Lo, ist7Hi uint32
_ [2]uint32
_ uint16
ioPerm uint16
}
|